Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Commun Biol ; 7(1): 1170, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294271

ABSTRACT

Wheat leaf rust, caused by Puccinia triticina (Pt), remains a constant threat to wheat production worldwide. Deployment of race-specific leaf rust (Lr) resistance genes in wheat provides effective protection against leaf rust, but often leads to selective pressures that drive the rapid emergence of new virulent Pt isolates in nature. However, the molecular mechanisms underlying the evasion of Lr-delivered resistance by leaf rust remain largely unknown. Here, we identify an avirulence gene AvrLr21 in Pt that triggers Lr21-dependent immune responses. BSMV (Barley stripe mosaic virus)-mediated host-induced gene silencing assay shows that silencing AvrLr21 compromises Lr21-mediated immunity. AvrLr21 interacts directly with Lr21 protein to induce a hypersensitive response in tobacco leaves. The evolved Lr21-breaking Pt isolates can suppress Lr21-mediated immunity. Our data provide a basis for studying the molecular determinants in Pt-wheat incompatible interaction and monitoring natural Pt populations to prioritize the deployment of Lr resistance genes in the field.


Subject(s)
Disease Resistance , Plant Diseases , Plant Proteins , Puccinia , Triticum , Triticum/microbiology , Triticum/genetics , Puccinia/pathogenicity , Plant Diseases/microbiology , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence/genetics , Host-Pathogen Interactions , Plant Immunity/genetics , Plant Viruses
2.
Plants (Basel) ; 13(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273922

ABSTRACT

Wheat leaf rust, caused by Puccinia triticina, is one of the most common fungal diseases of wheat in China and occurs widely in various wheat-growing regions. To clarify the epidemic, spread rules, and population structure of P. triticina among different regions, 217 isolates of P. triticina collected from Hebei, Shandong, Sichuan, and Xinjiang in China were tested by 34 Thatcher near-isogenic lines and 21 pairs of EST-SSR primers. A total of 83 races were identified, and THTT, PHTT, THTS, and PHJT were the most predominant races in the four provinces in 2009. We found enriched virulence and genetic diversity in the four P. triticina populations and a significant correlation between genetic polymorphism and geographic regions. However, no significant correlation was found between virulence phenotypes and molecular genotypes. Moreover, a notable high level of gene flow (Nm = 2.82 > 1) among four P. triticina populations was detected. The genetic relationship among Hebei, Shandong, and Sichuan populations was close, possibly due to the spread of P. triticina from Sichuan to Shandong and then to Hebei. In contrast, the Xinjiang population was relatively independent. Genetic differentiation analysis showed some level of differentiation among or within populations of P. triticina in the four provinces, and the genetic variation within populations (74.97%) was higher than across populations (25.03%). Our study provides a basis for a better understanding of the regional migration, epidemic, and population structure of P. triticina in China.

3.
Front Nutr ; 11: 1442535, 2024.
Article in English | MEDLINE | ID: mdl-39176030

ABSTRACT

Background: Radish seed is a functional food with many beneficial health effects. Glucosinolates are characteristic components in radish seed that can be transformed into bioactive isothiocyanates by gut microbiota. Objective: The present study aims to assess anti-obesity efficacy of radish seed glucosinolates (RSGs) and explored the underlying mechanisms with a focus on gut microbiota and fecal metabolome. Methods: High-fat diet-induced obese mice were supplemented with different doses of RSGs extract for 8 weeks. Changes in body weight, serum lipid, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels; and pathological changes in the liver and adipose tissue were examined. Fecal metabolome and 16S rRNA gene sequencing were used to analyze alterations in fecal metabolite abundance and the gut microbiota, respectively. Results and conclusion: Results showed that RSG extract prevented weight gain and decreased serum lipid, ALT, AST levels and lipid deposition in liver and epididymal adipocytes in obese mice. Treatment with RSG extract also increased gut microbiota diversity and altered the dominant bacteria genera in the gut microbiota, decreasing the abundance of Faecalibaculum and increasing the abundance of Allobaculum, Romboutsia, Turicibacter, and Akkermansia. Fecal metabolome results identified 570 differentially abundant metabolites, of which glucosinolate degradation products, such as sulforaphene and 7-methylsulfinylheptyl isothiocyanate, were significantly upregulated after RSG extract intervention. Furthermore, enrichment analysis of metabolic pathways showed that the anti-obesity effects of RSG extract may be mediated by alterations in bile secretion, fat digestion and absorption, and biosynthesis of plant secondary metabolites. Overall, RSG extract can inhibit the development of obesity, and the obesity-alleviating effects of RSG are related to alternative regulation of the gut microbiota and glucosinolate metabolites.

4.
Mol Plant Pathol ; 25(7): e13490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952297

ABSTRACT

Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.


Subject(s)
Disease Resistance , Plant Diseases , Puccinia , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Puccinia/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Plant , Virulence/genetics , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Basidiomycota/pathogenicity , Basidiomycota/genetics , Plant Leaves/microbiology , Plant Leaves/immunology , Cell Death , Sequence Deletion/genetics
5.
Int J Food Microbiol ; 421: 110787, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878704

ABSTRACT

Gamma-aminobutyric acid (GABA) produced by lactic acid bacteria (LAB) is safe and has several health benefits. Levilactobacillus brevis YSJ3 was selected from 110 LAB. It exhibited the highest in vitro GABA production level of 970.10 µg/mL. Whole-genome analysis revealed that L. brevis YSJ3 contained gadR, gadC, gadB and gadA. Furthermore, the Luedeking-Piret model was fitted, which indicated that GABA production was divided into three stages. The gadR 0079, gadC 0080, and gadB 0081 were confirmed to promote GABA synthesis. Moreover, 55 metabolites, particularly those involved in arginine metabolism, were significantly different at 6 and 20 h of cultivation. Notably, L. brevis YSJ3 significantly improved sleep in mice and increased GABA levels in the mice's gut compared with the control group. This suggests that the oral administration of L. brevis YSJ3 improves sleep quality, probably by increasing intestinal GABA levels. Overall, L. brevis YSJ3 was confirmed as a GABA-producing strain in vitro and in vivo, making it a promising probiotic candidate for its application in food and medicine.


Subject(s)
Genome, Bacterial , Levilactobacillus brevis , Probiotics , gamma-Aminobutyric Acid , Levilactobacillus brevis/genetics , Levilactobacillus brevis/metabolism , Animals , gamma-Aminobutyric Acid/metabolism , Probiotics/metabolism , Mice , Male , Whole Genome Sequencing , Gastrointestinal Microbiome
6.
Am J Surg ; 237: 115761, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38777717

ABSTRACT

BACKGROUND: The burgeoning demand for hepatectomy in elderly patients with hepatocellular carcinoma (HCC) necessitates improved perioperative care. Geriatric populations frequently experience functional decline and frailty, predisposing them to adverse postoperative outcomes. The Barthel Index serves as a reliable measure for assessing functional capacity, and this study evaluates its impact on surgical textbook outcomes (TOs) in elderly HCC patients. METHODS: A multicenter retrospective cohort study analyzed elderly patients (≥70 years) following hepatectomy for HCC between 2013 and 2021. Utilizing a Barthel Index cut-off value of 85, patients were divided into two groups: with and without preoperative functional decline and frailty. The primary outcome was the rate of TO, encompassing seven criteria. TO rates were compared between groups, and multivariate logistic regression analyses identified independent risks for achieving TOs. RESULTS: Of 497 elderly patients, 157 (31.6 â€‹%) exhibited preoperative functional decline and frailty (Barthel Index score <85). The overall TO rate was 58.6 â€‹%. Patients with preoperative Barthel Index score <85 had significantly lower TO rates compared to patients with score ≥85 (29.3 â€‹% vs. 72.1 â€‹%, P â€‹< â€‹0.001). Multivariate analysis revealed preoperative Barthel Index score <85 as an independent risk for achieving TO (odds ratio 3.413, 95 â€‹% confidence interval 1.879-6.198, P â€‹< â€‹0.001). Comparable results were observed in the subgroups of patients undergoing open and laparoscopic hepatectomy. CONCLUSION: Preoperative Barthel Index-based assessment of functional decline and frailty significantly predicts TOs following hepatectomy in elderly HCC patients, enabling identification of high-risk patients and informing preoperative management and postoperative care within geriatric oncology.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/surgery , Liver Neoplasms/mortality , Female , Aged , Male , Retrospective Studies , Aged, 80 and over , Geriatric Assessment , Postoperative Complications/epidemiology , Treatment Outcome , Frailty/complications , Frailty/epidemiology , Frailty/diagnosis
7.
Plant Dis ; 108(1): 13-19, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37526485

ABSTRACT

Wheat leaf rust (Lr), which is caused by Puccinia triticina Eriks. (Pt), is one of the most important wheat diseases affecting wheat production globally. Using resistant wheat cultivars is the most economical and environmentally friendly way to control leaf rust. The Italian wheat cultivar Libellula has demonstrated good resistance to Lr in field studies. To identify the genetic basis of Lr resistance in 'Libellula', 248 F6 recombinant inbred lines from the cross 'Libellula'/'Huixianhong' was phenotyped for Lr severity in seven environments: the 2014/2015, 2016/2017, 2017/2018, and 2018/2019 cropping seasons at Baoding, Hebei Province, and the 2016/2017, 2017/2018, and 2018/2019 crop seasons at Zhoukou, Henan Province. Bulked segregant analysis and simple sequence repeat markers were then used to identify the quantitative trait loci (QTLs) for Lr adult-plant resistance in the population. Six QTLs were consequently detected and designated as QLr.hebau-1AL and QLr.hebau-1AS that were presumed to be new and QLr.hebau-1BL, QLr.hebau-3AL, QLr.hebau-4BL, and QLr.hebau-7DS that were identified at similar physical positions as previously reported QTLs. Based on chromosome positions and molecular marker tests, QLr.hebau-1BL and QLr.hebau-7DS share similar flanking markers with Lr46 and Lr34, respectively. Lr46 and Lr34 are race nonspecific adult plant resistance (APR) genes for leaf rust and stripe rust and powdery mildew. QLr.hebau-4BL showed multiple disease resistance to leaf rust, stripe rust, Fusarium head blight, and powdery mildew. The QTL identified in this study, as well as their closely linked markers, may potentially be used in marker-assisted selection in wheat breeding.


Subject(s)
Basidiomycota , Puccinia , Triticum , Triticum/genetics , Plant Breeding , Plant Diseases/genetics , Chromosome Mapping , Basidiomycota/genetics , Italy
8.
Antioxidants (Basel) ; 12(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38136153

ABSTRACT

Olive leaves are rich in phenolic compounds. This study explored the chemical profiles and contents of free phenolics (FPs) and bound phenolics (BPs) in olive leaves, and further investigated and compared the antioxidant properties of FPs and BPs using chemical assays, cellular antioxidant evaluation systems, and in vivo mouse models. The results showed that FPs and BPs have different phenolic profiles; 24 free and 14 bound phenolics were identified in FPs and BPs, respectively. Higher levels of phenolic acid (i.e., sinapinic acid, 4-coumaric acid, ferulic acid, and caffeic acid) and hydroxytyrosol were detected in the BPs, while flavonoids, triterpenoid acids, and iridoids were more concentrated in the free form. FPs showed a significantly higher total flavonoid content (TFC), total phenolic content (TPC), and chemical antioxidant properties than those of BPs (p < 0.05). Within the range of doses (20-250 µg/mL), both FPs and BPs protected HepG2 cells from H2O2-induced oxidative stress injury, and there was no significant difference in cellular antioxidant activity between FPs and BPs. The in vivo experiments suggested that FP and BP treatment inhibited malondialdehyde (MDA) levels in a D-galactose-induced oxidation model in mice, and significantly increased antioxidant enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and the total antioxidant capacity (T-AOC). Mechanistically, FPs and BPs exert their antioxidant activity in distinct ways; FPs ameliorated D-galactose-induced oxidative stress injury partly via the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway, while the BP mechanisms need further study.

9.
Food Chem X ; 20: 101023, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144792

ABSTRACT

The binding capacity of 10 flavonoids with okra seed protein (OSP) was studied by fluorescence spectroscopy. The structure of flavonoids had an obvious impact on binding performance. The binding ability of flavanone was lower than that of flavone, isoflavone and dihydrochalcone. The binding capacity of flavonoid glycoside was superior to that of the corresponding flavonoid aglycone. The binding ability was positively correlated with the number of phenolic hydroxyl groups on the B ring. The steric field and electrostatic field model constructed by 3D-QSAR method could well explain the above interaction behavior. Thermodynamic analysis suggested that the quenching mechanism of OSP caused by flavonoids was static quenching, and the binding-site number was 1. In addition, hydrogen bonding and van der Waals force dominated this interaction. The 3D and synchronous fluorescence spectra showed that there was no significant change in the polarity of the environment around tryptophan and tyrosine residues during binding.

11.
Front Microbiol ; 14: 1062548, 2023.
Article in English | MEDLINE | ID: mdl-37032911

ABSTRACT

Introduction: Wheat leaf rust caused by Puccinia triticina (Pt) remains one of the most destructive diseases of common wheat worldwide. Understanding the pathogenicity mechanisms of Pt is important to control wheat leaf rust. Methods: The urediniospores of Pt race PHNT (wheat leaf rust resistance gene Lr19-avirulent isolate) were mutagenized with ethyl methanesulfonate (EMS), and two Lr19-virulent mutants named M1 and M2 were isolated. RNA sequencing was performed on samples collected from wheat cultivars Chinese Spring and TcLr19 infected with wild-type (WT) PHNT, M1, and M2 isolates at 14 days post-inoculation (dpi), respectively. Screening AvrLr19 candidates by quantitative reverse transcription PCR (qPCR) and Agrobacterium-mediated transient assays in Nicotiana benthamiana. Results: 560 genes with single nucleotide polymorphisms (SNPs) and insertions or deletions (Indels) from non-differentially expressed genes were identified. Among them, 10 secreted proteins were screened based on their fragments per kilobase of exon model per million mapped reads (FPKM) values in the database. qPCR results showed that the expression profiles of 7 secreted proteins including PTTG_27471, PTTG_12441, PTTG_28324, PTTG_26499, PTTG_06910, PTTG_26516, and PTTG_03570 among 10 secreted proteins in mutants were significantly different with that in wild-type isolate after infection wheat TcLr19 and might be related to the recognition between Lr19 and AvrLr19. In addition, a total of 216 differentially expressed genes (DEGs) were obtained from three different sample comparisons including M1-vs-WT, M2-vs-WT, and M1-vs-M2. Among 216 DEGs, 15 were predicted to be secreted proteins. One secreted protein named PTTG_04779 could inhibit programmed progress of cell death (PCD) induced by apoptosis-controlling genes B-cell lymphoma-2 associated X protein (BAX) on Nicotiana benthamiana, indicating that it might play a virulence function in plant. Taken together, total 8 secreted proteins, PTTG_04779, PTTG_27471, PTTG_12441, PTTG_28324, PTTG_26499, PTTG_06910, PTTG_26516, PTTG_03570 are identified as AvrLr19 candidates. Discussion: Our results showed that a large number of genes participate in the interaction between Pt and TcLr19, which will provide valuable resources for the identification of AvrLr19 candidates and pathogenesis-related genes.

12.
Curr Res Food Sci ; 6: 100493, 2023.
Article in English | MEDLINE | ID: mdl-37026022

ABSTRACT

Vegetables from the Brassica species are excellent sources of glucosinolates (GLSs), the precursors of health-promoting isothiocyanates (ITCs). Fermentation enhances the biotransformation of GLSs into potential bioactive ITCs. To explore the biotransformation of GLSs during Brassica fermentation, the changes in GLSs during the fermentation of two Brassica species (i.e., cauliflower and broccoli); the formation of corresponding breakdown products; and the shifts in physicochemical parameters, bacterial communities, and myrosinase activities involved in GLSs degradation were systematically investigated. Nine aliphatic, three indolic, and two benzenic GLSs were identified in fermented cauliflower (FC) and fermented broccoli (FB). Aliphatic glucoiberin and glucoraphanin were the major forms of GLS in FC and FB, respectively; indolic glucobrassicin was also abundant in both FC and FB. The total GLS content decreased by 85.29% and 65.48% after 3 d of fermentation in FC and FB, respectively. After 2 d of fermentation, a significant increase in bioactive GLS degradation products (P < 0.05), including sulforaphane (SFN), iberin (IBN), 3,3-diindolylmethane (DIM), and ascorbigen (ARG), was observed in FC and FB compared to in fresh cauliflower and broccoli. Moreover, variations in pH value and titratable acidity in FC and FB correlated with Brassica fermentation and were accomplished by lactic acid bacteria, including Weissella, Lactobacillus-related genera, Leuconostoc, Lactococcus, and Streptococcus. These changes may enhance the biotransformation of GSLs to ITCs. Overall, our results indicate fermentation leads to the degradation of GLSs and the accumulation of functional degradation products in FC and FB.

13.
Front Plant Sci ; 14: 1095677, 2023.
Article in English | MEDLINE | ID: mdl-36950361

ABSTRACT

Wheat leaf rust, caused by Puccinia triticina, is one of the most important fungal diseases of wheat in China. However, little is known about the dynamic changes of population structure and genetic diversity of P. triticina during a period of time. In this study, 247 isolates of P. triticina collected from Hebei Province from 2001 to 2010 were tested on 36 Thatcher near-isogenic lines for virulence diversity and detected by 21 pairs of Expressed Sequence Tag derived Simple Sequence Repeat (EST-SSR) primers for genetic diversity. A total of 204 isolates were successfully identified as 164 races, and THTT, THST, PHRT, THTS, and PHTT were the most common races in Hebei Province from 2001 to 2010. The cluster analysis based on virulence showed that P. triticina has a rich virulence polymorphism, which had a certain correlation with the years, while the cluster analysis based on EST-SSR showed that the genetic diversity of the P. triticina population was significantly different between years in Hebei Province from 2001 to 2010. In addition, the population structure of P. triticina may have changed greatly in 2007 and 2009, which was significantly different from that of 2001-2006 on either virulence or genetic characteristics. The variation frequency of the population structure had an increasing trend during this period. From 2001 to 2010, there was a certain degree of gene flow among the P. triticina populations. No significant correlation was found between virulence and molecular polymorphism. The genetic differentiation analysis of the 10 tested populations (each year as a population) showed that the coefficient of genetic differentiation (Gst) was 0.27, indicating that there was a certain genetic differentiation among or within populations of P. triticina in Hebei Province. The genetic variation within populations (73.08%) was higher than that among populations (26.92%), which indicated that the genetic variations were mainly found within populations. Our study provides the foundation for a better understanding of the population structure change and genetic diversity of P. triticina over a period in Hebei Province of China.

14.
Food Res Int ; 163: 112256, 2023 01.
Article in English | MEDLINE | ID: mdl-36596167

ABSTRACT

Reducing sodium salt content in traditional fermented vegetables and developing low-salt fermented products have attracted increasing attention.However, low-salt fermented vegetables are prone to accumulate toxic biogenic amines (BAs) caused by the undesirable metabolism of spoilage microorganisms. This study aimed to investigate the impact of a CO2-modified atmosphere (MA) approach to the fermentation of low-salt Zhacai and the accumulation of BAs. The results show CO2-MA effectively suppressed the production of excessive BAs in low-salt Zhacai, as evidenced by a decrease in the total BA content from 63.66 to 161.41 mg/ kg under natural air conditions to 1.88-24.76 mg/ kg under CO2-MA. Overall, the mechanism of hindering BA formation was closely related to the change in the microbial community and the downregulation of BA-producing enzymes. Lactic acid bacteria, including Lactiplantibacillus plantarum, Weissella spp., and Pediococcus spp., were enriched under CO2-MA, whereas amine-producing microorganisms (e.g., Halomonas spp., Psychrobacter spp., Corynebacterium spp., and Levilactobacillus brevis) were greatly inhibited. Moreover, metagenomic analysis revealed that genes encoding amino acid decarboxylase, amine deiminase, and amine synthase were downregulated, which could be the fundamental reason for BA reduction. This study provides an alternative method for reducing BA production in fermented food.


Subject(s)
Amino Acids , Carbon Dioxide , Fermentation , Amino Acids/metabolism , Biogenic Amines/analysis , Vegetables/metabolism , Atmosphere
15.
Front Nutr ; 9: 1043055, 2022.
Article in English | MEDLINE | ID: mdl-36523330

ABSTRACT

The impact of fermentation by Levilactobacillus brevis YSJ3 on sleep-promoting components (SPCs) of carrot juice was evaluated. The contents of acetic acid, isovaleric acid, butyric acid, and γ-aminobutyric acid (GABA) significantly increased after fermentation. The beneficial effects of fermented carrot juice (FCJ) on sleep were evaluated in animal experiments. Behavioral test reveal SPCs-enriched FCJ could effectively relieve anxiety. The sleep duration in the FCJ group were extended compared to the control (NC) group and the unfermented carrot juice (UCJ) group. Moreover, the relative abundances of Ruminiclostridium and Akkermansia in the FCJ group and PC group, respectively, increased significantly, compared to the NC group the UCJ group. The contents of gut short-chain fatty acids in the FCJ group were significantly higher than that in the NC group and the UCJ group. The levels of GABA and 5-hydroxytryptamine in the brain for the FCJ group also increased significantly, compared to the NC group and the UCJ group. It indicated that SPCs-enriched FCJ effectively improved sleep in mice, which might be related to the fermentation of carrot juice and the compounds produced during the fermentation.

16.
Front Plant Sci ; 13: 1054673, 2022.
Article in English | MEDLINE | ID: mdl-36388507

ABSTRACT

Puccinia triticina, which is the causative agent of wheat leaf rust, is widely spread in China and most other wheat-planting countries around the globe. Cultivating resistant wheat cultivars is the most economical, effective, and environmentally friendly method for controlling leaf rust-caused yield damage. Exploring the source of resistance is very important in wheat resistance breeding programs. In order to explore more effective resistance sources for wheat leaf rust, the resistance of 112 wheat accessions introduced from the U.S. National Plant Germplasm System were identified using a mixture of pathogenic isolates of THTT, THTS, PHTT, THJT and THJS which are the most predominant races in China. As a result, all of these accessions showed high resistance at seedling stage, of which, ninety-nine accessions exhibited resistance at adult plant stage. Eleven molecular markers of eight effective leaf rust resistance genes in China were used to screen the 112 accessions. Seven effective leaf rust resistance genes Lr9, Lr19, Lr24, Lr28, Lr29, Lr38 and Lr45 were detected, except Lr47. Twenty-three accessions had only one of those seven effective leaf rust resistance gene. Eleven accessions carried Lr24+Lr38, and 7 accessions carried Lr9+Lr24+Lr38, Lr24+Lr38+Lr45, Lr24+Lr29+Lr38 and Lr19+Lr38+Lr45 respectively. The remaining seventy-one accessions had none of those eight effective leaf rust resistance genes. This study will provide theoretical guidance for rational utilization of these introduted wheat accessions directly or for breeding the resistant wheat cultivars.

17.
Food Res Int ; 161: 111879, 2022 11.
Article in English | MEDLINE | ID: mdl-36192911

ABSTRACT

Pickled tuber mustard is a traditional fermented pickle widely consumed in China, and it is characterized by the presence of glucosinolates (GSLs). To understand the biotransformation of GSLs in tuber mustard during pickling, the dynamics of the glucosinolate-myrosinase (GSL-MYR) system and its potential associations with bacterial communities and fermentation characteristics (i.e., salinity, titratable acidity [TAA], and pH) were investigated. In total, 18 GSLs were identified in fresh tuber mustard; 12 were aliphatic, 4 were indolic, and 2 were aromatic, with aliphatic sinigrin and aromatic gluconasturtiin being the dominating components. The pickling process resulted in complete degradation of GSLs, with isothiocyanates (ITCs) and nitriles being the main breakdown products. Total ITCs reached maximum concentrations on day 21-28, while total nitriles peaked at the end of pickling. Based on Spearman's correlation analysis, our study showed that lactic acid bacteria (LAB) species might contribute to GSL transformation in pickled tuber mustard. Specifically, Weissella paramesenteroides, Pediococcus pentosaceus, and unclassified Lactococcus exhibited positive correlations with GSL contents (p < 0.01), suggesting that they might contribute to the increasing amounts of GSLs in the initial pickling, while the Lactobacillus-related populations that dominated in the later stages (i.e., Companilactobacillus alimentarius and Lactiplantibacillus Plantarum) were positively correlated with nitrile product concentrations. Moreover, redundancy analysis showed that pH and TAA had strong effect on myrosinase activity during tuber mustard pickling, which was dictated via the organic acids produced by microorganisms. This study provided a perspective for understanding the effect of fermentation on the transformation of tuber mustard GSLs.


Subject(s)
Glucosinolates , Mustard Plant , Fermentation , Glucosinolates/analysis , Glycoside Hydrolases , Isothiocyanates/chemistry , Nitriles
18.
Plant Dis ; 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36044367

ABSTRACT

Peach (Prunus persica [L.] Batsch) as an economically important fruit tree is widely cultivated in Shenzhou, China. In September 2021, peach rust was observed in the peach tree in Shenzhou City, Hebei Province (lat. 38°02'56'' N, long. 115°54'57'' E, altitude 22 m). We investigated a peach orchard with a planting area of 1334 m2, where a total of 162 peach trees were planted, and found that about 10% of peach trees exhibited severe disease symptoms. The leaves of infected plant developed 100% disease symptoms, in which 50% of the infected leaves showed about 10 small pale-yellow spots on the front of leaves and reddish-brown pustules on the corresponding abaxial surface of leaves. Urediniospores varied from obovoid to clavate in shape, sometimes in irregular shape. They were orange-brown, echinulate near base with spines smaller towards apex and often smooth at apex, with germ pores 3-4 at equator, size ranging from 25.4 to 38.6 × 10.1 to 18.7 µm (n=100), and with wall 1 to 1.5µm thick at sides and 5-7 µm thick at apex. Golden capitate paraphyses were present, ranging from 25 to 40 µm in length, with a head in diameter of 12 to 14 µm and a tail in width of 5.2 to 6.5 µm. Based on the rust morphological characters, this pathogen was primarily identified as Tranzschelia discolor (Fuckel) Tranzschel & Litv. (Hiratsuka et al. 1992). For molecular identification, total DNA was extracted from 2 isolates, respectively, and the internal transcribed spacer (ITS) region was PCR-amplified using the primer set ITS5-u and ITS4-u (Pfunder et al. 2001). Obtained sequences were compared with sequences in the GenBank repository using BLAST algorithm. BLAST showed a 100% sequence identify to T. discolor (accession nos. AB097449、MT786217、KU712078、KY764179、MH599069). The sequence has been deposited in GenBank with (accession NO. ON950745 and ON950747). Thus, combining morphological observations and molecular identification, the isolate was identified as T. discolor. The pathogenicity was verified by inoculating the abaxial surface of peach leaves with a suspension of 1 × 106 urediniospores/ml. Peach leaves sprayed with sterile water were used as controls. The inoculated peach trees were placed in a greenhouse at 20°C under dark for 24 hours and maintained at 100% relative humidity to promote disease development. Next, the peach trees were grown in a greenhouse at 20°C with a 12 h day length and symptoms were observed on the leaves 14 days after inoculation. In contrast, the control leaves were asymptomatic. Previous studies reported that peach rust occurred in Oman, Korea and Brazil was caused by T. discolor. (Deadman M L, et al.2007, Shin, H D, et al. 2019, Vidal G S, et al. 2021). To our knowledge, this is the first report of T. discolor as a causal agent causing peach leaf rust in Northern China, which will enable us to rapidly diagnose this disease, identify the occurrence of this disease and develop adequate management strategies to control it in China.

19.
Front Plant Sci ; 13: 874654, 2022.
Article in English | MEDLINE | ID: mdl-35720612

ABSTRACT

Pathogenesis-related (PR) proteins play important roles in plant defense response and systemic acquired resistance (SAR). PR1 has antifungal activity against many plant pathogens. In our previous study, RNA sequencing (RNA-seq) was conducted on resistant wheat line TcLr19 and sensitive wheat cultivar Chinese Spring inoculated with Puccinia triticina (Pt) race PHNT. In this study, seven salicylic acid (SA)-induced TaPR1 genes involved in plant disease resistance were found in the RNA-seq library. Quantitative PCR (qPCR) results showed that TaPR1-4 was most induced by Pt among these seven TaPR1 genes in the incompatible interaction. Yeast two-hybrid (Y2H) results showed that TaPR1-4 interacted with TaTLP1 via the αIV helix. Protein-mediated phenotyping assays in vivo and antifungal activity in vitro demonstrated that wheat leaves infiltrated with pure TaPR1-4 protein developed significantly less disease compared to control leaves. This effect was correlated with a strong increase in defense gene expression, and resistance activity was dependent on the CAPE1 motif located in the C-terminal region of TaPR1-4. These findings increase current knowledge regarding the interaction of TaPR1 and TaTLP1 and provide new insights on the role of TaPR1 protein in the resistance of wheat to Pt.

20.
Plants (Basel) ; 11(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684188

ABSTRACT

Olive (Olea europaea L.) is a world-famous woody oil tree and popular for redundant unsaturated fatty acids. Fatty acid desaturase (FAD) genes are responsible for fatty acid desaturation and stress regulation but have not yet been identified in olive at the whole genome level. This study identified 40 and 27 FAD genes in the cultivated olive O. europaea cv. Farga and the wild olive O. europaea var. Sylvestris, respectively. Phylogenetic analysis showed that all the FAD genes could be classified into the soluble FAB2/SAD clade and membrane-bound clade, including ADS/FAD5, DES, FAD4, SLD, ω-6 and ω-3, with the high consistency of subcellular localization, motif composition and exon-intron organization in each group. FAD genes in olive showed the diverse functional differentiation in morphology of different tissues, fruit development and stress responses. Among them, OeFAB2.8 and OeFAD2.3 were up-regulated and OeADS.1, OeFAD4.1 and OeFAD8.2 were down-regulated under the wound, Verticillium dahliae and cold stresses. This study presents a comprehensive analysis of the FAD genes at the whole-genome level in olives and will provide guidance for the improvement of oil quality or stress tolerance of olive trees.

SELECTION OF CITATIONS
SEARCH DETAIL