Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Ther ; 14(3): 280-90, 2007.
Article in English | MEDLINE | ID: mdl-17515705

ABSTRACT

The in vitro metabolism of ciclesonide, a novel inhaled nonhalogenated glucocorticoid for the treatment of asthma, was compared in cryopreserved hepatocytes from mice, rats, rabbits, dogs, and humans. Incubations of C-ciclesonide with individual hepatocyte suspensions revealed similar metabolite profiles in all 5 in vitro systems used. Ciclesonide was rapidly converted to its active metabolite, desisobutyryl-ciclesonide (des-CIC). Des-CIC was then extensively metabolized to pharmacologically inactive metabolites through oxidation and reduction, followed by glucuronidation. A total of 12 groups of metabolites derived from des-CIC were characterized and identified by liquid chromatography/radioactivity monitor/mass spectrometry. Oxidation occurred on both the cyclohexane ring and the steroid moiety. Hippuric acid formation by cleavage of the cyclohexylmethyl moiety of ciclesonide, followed by aromatization of the cyclohexane ring through multiple steps of hydroxylation, dehydration, and conjugation with glycine, was found in rat, rabbit, and human hepatocyte incubations. The results indicated that ciclesonide and its active metabolite, des-CIC, were extensively metabolized in vitro in animal and human hepatocytes and that the metabolite profiles in mouse, rat, rabbit, and dog hepatocytes were similar to the profiles in human hepatocytes.


Subject(s)
Anti-Allergic Agents/metabolism , Hepatocytes/metabolism , Pregnenediones/metabolism , Animals , Dogs , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred ICR , Rabbits , Rats , Rats, Sprague-Dawley , Species Specificity
2.
J Agric Food Chem ; 51(26): 7555-9, 2003 Dec 17.
Article in English | MEDLINE | ID: mdl-14664506

ABSTRACT

An accurate, reliable, and reproducible assay was developed and validated to determine flunixin in bovine liver, kidney, muscle, and fat. The overall recovery and percent coefficient of variation (%CV) of twenty-eight determinations in each tissue for flunixin free acid were 85.9% (5.9% CV) for liver, 94.6% (9.9% CV) for kidney, 87.4% (4.7% CV) for muscle, and 87.6% (4.4% CV) for fat. The theoretical limit of detection was 0.1 microg/kg (ppb, ng/g) for liver and kidney, and 0.2 ppb for muscle and fat. The theoretical limit of quantitation was 0.3, 0.2, 0.6, and 0.4 ppb for liver, kidney, muscle, and fat, respectively. The validated lower limit of quantitation was 1 ppb for edible tissues with the upper limit of 400 ppb for liver and kidney, 100 ppb for fat, and 40 ppb for muscle. Accuracy, precision, linearity, specificity, ruggedness, and storage stability were demonstrated. Briefly, the method involves an initial acid hydrolysis, followed by pH adjustment ( approximately 9.5) and partitioning with ethyl acetate. A portion of the ethyl acetate extract was purified by solid-phase extraction using a strong cation exchange cartridge. The eluate was then evaporated to dryness, reconstituted, and analyzed using LC/MS/MS. The validated method is sensitive and specific for flunixin in edible bovine tissue.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Chromatography, High Pressure Liquid/methods , Clonixin/analogs & derivatives , Clonixin/analysis , Food Contamination/analysis , Mass Spectrometry/methods , Meat/analysis , Adipose Tissue/chemistry , Animals , Cattle , Drug Stability , Kidney/chemistry , Liver/chemistry , Muscle, Skeletal/chemistry , Reproducibility of Results , Sensitivity and Specificity
3.
J Agric Food Chem ; 51(13): 3753-9, 2003 Jun 18.
Article in English | MEDLINE | ID: mdl-12797739

ABSTRACT

A method was developed and validated to determine 5-hydroxyflunixin in raw bovine milk using liquid chromatography tandem mass spectrometry (LC/MS/MS). The mean recovery and percentage coefficient of variation (%CV) of 35 determinations for 5-hydroxyflunixin was 101% (5% CV). The theoretical limit of detection was 0.2 ppb with a validated lower limit of quantitation of 1 ppb and an upper limit of 150 ppb. Accuracy, precision, linearity, specificity, ruggedness, and storage stability were demonstrated. A LC/MS/MS confirmatory method using the extraction steps of the determinative method was developed and validated for 5-hydroxyflunixin in milk from cattle. Briefly, the determinative and confirmatory methods were based on an initial solvent (acetone/ethyl acetate) precipitation/extraction of acidified whole milk. The solvent precipitation/extraction effectively removed incurred ((14)C) residues from milk samples. The organic extract was then purified by solid phase extraction (SPE) using a strong cation exchange cartridge (sulfonic acid). The final SPE-purified sample was analyzed using LC/MS/MS. The methods are rapid, sensitive, and selective and provide for the determination and confirmation of 5-hydroxyflunixin at the 1 and 2 ppb levels, respectively.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Chromatography, High Pressure Liquid/methods , Clonixin/analogs & derivatives , Clonixin/analysis , Drug Residues/analysis , Mass Spectrometry/methods , Milk/chemistry , Animals , Cattle , Drug Stability , Female , Hydroxylation , Quality Control , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...