Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Cancer Drug Targets ; 24(5): 519-533, 2024.
Article in English | MEDLINE | ID: mdl-38804344

ABSTRACT

BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs. METHODS: GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit. RESULTS: Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown. CONCLUSION: LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.


Subject(s)
Carcinoma, Neuroendocrine , Cell Proliferation , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Long Noncoding/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Enhancer Elements, Genetic , Disease Progression , Cell Line, Tumor , Cell Movement , Reactive Oxygen Species/metabolism , Enhancer RNAs
2.
J Environ Manage ; 345: 118810, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37595461

ABSTRACT

Vegetation concrete has been widely applied for the ecological restoration of bare steep slopes in short-term frozen and non-frozen soil regions in China. However, field experiments conducted in seasonally frozen soil regions have revealed decreases in the bulk density, nutrient content and vegetation coverage. This study aimed to clarify the evolution process and mechanism of the engineering properties of vegetation concrete under atmospheric freeze-thaw (F-T) test conditions. The physical, mechanical, and nutrient properties of vegetation concrete were investigated using six F-T cycles (0, 1, 2, 5, 10 and 20) and two initial soil water contents (18 and 22%). The results revealed decreases in the acoustic wave velocity and cohesive forces and an increase in the permeability coefficient of the vegetation concrete owing to F-T action. X-ray diffraction tests indicated that the decreased cohesive force was closely related to the overall decrease in the content of gelling hydration products in the vegetation concrete. Additionally, the contents of NH4+-N, PO43-P and K+ in the vegetation concrete increased, whereas that of NO3--N decreased. The loss rates of these soluble nutrients increased, indicating that the nutrient retention capacity of the vegetation concrete had decreased. Specifically, the decreased nutrient retention capacity was mainly related to the disintegration and fragmentation of larger aggregates due to F-T action. This study provides theoretical support for future research on improving the anti-freezing capability of ecological slope protection substrates in seasonally frozen soil regions.


Subject(s)
Soil , Water , Soil/chemistry , Climate , Engineering , China
3.
Front Plant Sci ; 13: 1028553, 2022.
Article in English | MEDLINE | ID: mdl-36507450

ABSTRACT

Introduction: In order to solve the inhibition of alkaline environment on plants growth at the initial stage of Eco-restoration of vegetation concrete technology, introducing AMF into vegetation concrete substrate is an effective solution. Methods: In this study, Glomus mosseae (GM), Glomus intraradices (GI) and a mixture of two AMF (MI) were used as exogenous inoculation agents. Festuca elata and Cassia glauca were selected as host plants to explore the relationship between the physiological characteristics of plants and the content of substrate cement under exogenous inoculation of AMF. Results: The experiment showed that, for festuca elata, the maximum mycorrhizal infection rates of inoculation with GM, MI were when the cement contents ranged 5-8% and that of GI inoculation was with the cement contents ranging 5-10%. Adversely, for Cassia glauca, substrate cement content had little effect on the root system with the exogenous inoculation of AMF. Compared with CK, the effects of AMF inoculation on the physiological characteristics of the two plants were different. When the cement content was the highest (10% and 8% respectively), AMF could significantly increase(p<0.05) the intercellular CO2 concentration (Ci) of Festuca elata. Moreover, for both plants, single inoculation was more effective than mixed inoculation. When the cement content was relatively low, the physiological characteristics of Cassia glauca were promoted more obviously by the inoculation of GI. At higher cement content level, inoculation of GM had a better effect on the physiological characteristics of the two plants. Conclusion: The results suggest that single inoculation of GM should be selected to promote the growth of Festuca elata and Cassia glauca in higher alkaline environment.

4.
Sci Total Environ ; 838(Pt 4): 156446, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660577

ABSTRACT

Under freeze-thaw conditions, the substrates used for ecological protection degrade, which involves decreases in compactness and fertiliser retention ability. As such, our purpose in this study was to use two typical types of activated carbon (AC), wood-based activated carbon (WAC) and coal-based activated carbon (CAC), to enhance the antifrost property of vegetation concrete (VC). We investigated the effects of five different proportions of planting soil weight (0.5 %, 1 %, 2 %, 4 %, and 6 %) mixed in each type of AC to determine their influence on the physical, mechanical, chemical, and biological properties of VC. The VC samples prepared without AC were used as control check (CK). The results showed that AC addition effectively enhanced the nutrient retention and microorganism capacity of VC under freeze-thaw conditions (10 and 60 freeze-thaw cycles). The leaching loss rate of ammonium nitrogen (NH4+-N) decreased to 31.98 % for WAC-6 %-60 from 46.87 % for CK-60, and the microorganism biomass carbon (MBC) increased to 138.54 mg·kg-1 for WAC-6 %-60 from 103.52 mg·kg-1 for CK-60. However, we observed some negative effects, including decreases in the cohesion and internal friction angle. In addition, the water holding capacity and matric suction first increased and then decreased as the proportion of AC mixed in the VC increased, with a turning point of approximately 2 %. By comprehensively considering previous VC eco-restoration technology study results, the recommended mixing amount of AC is 1 %-2 %, which would take full advantage of the benefits of AC and ensure that any negative effect of its use falls within an acceptable range. In addition, WAC generally performed better than CAC, but the aging rate of the former was faster than that of the latter according to scanning electron microscopy (SEM) images and dissolved organic carbon (DOC) analysis. From our results, we concluded that incorporating AC into VC improves the suitability of VC when applied in freeze-thaw conditions.


Subject(s)
Charcoal , Soil , Fertility , Freezing , Nitrogen/metabolism , Soil/chemistry
5.
Sci Rep ; 12(1): 1264, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35075223

ABSTRACT

Basalt fiber (BF) reinforced vegetation concrete (VC) technique has attracted the attention of researchers. In order to investigate the reinforcement properties of BF reinforced VC, the optimal BF length and content. Through the single BF pullout test and direct shear test, the properties of interfacial strength between BF/VC and the reliability of the formula for calculating the optimal BF reinforcement length are studied. It has been found that the designed equipment is an efficient method to obtain the interfacial peak shear strength and residual shear strength of BF/VC. Moreover, the direct shear test proves the feasibility of the formula, which is used as a basis for mixing BF length in engineering. The anchoring effect between the cement hydration product and the fiber in the VC changes the mechanical action between BF/VC and significantly improves the shear strength of the interface. Higher dry density effectively enhanced the peak tension of a single BF by 149.23%. The optimal BF length and content make the softening degree of vegetation concrete not evident, which improves the durability of VC engineering. The formula of optimum fiber reinforced length and empirical formula can be used as reference for mixing basalt fiber in practical engineering.

6.
Sci Rep ; 10(1): 14483, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879411

ABSTRACT

Vegetation concrete is one of the most widely used substrates for slope ecological protection in China. However, there are still some imperfections that are disadvantageous for plant growth, such as high density, low porosity, insufficient nutrient retention ability and so on. In this paper, the effect of wood activated carbon and mineral activated carbon on the physicochemical properties of vegetation concrete is studied. The experimental results show that the activated carbon proportion in vegetation concrete is positively related to the porosity, permeability coefficient, water holding capacity, and nutrient content and retention ability, while it is negatively related to the dry density, water retention ability, cohesive force and internal friction angle. However, it should be noticed that when the proportion exceeds 2%, the average height, aboveground biomass and underground biomass of Cynodon dactylon decrease with increasing proportion of activated carbon. The effect of wood activated carbon is generally more remarkable than that of mineral activated carbon. In addition, according to the research results, the effect of activated carbon on vegetation concrete can last for at least half a year, although it does slowly deteriorate with increasing time. By comprehensive consideration of the current industry standard, previous research results and economical reasoning, the recommended type of activated carbon is wood, with a corresponding suitable proportion ranging between 1 and 2%.


Subject(s)
Charcoal/chemistry , Conservation of Natural Resources , Cynodon/growth & development , Soil , Wood/chemistry , Biomass , Carbon/chemistry , China , Environment , Microscopy, Electron, Scanning , Nitrogen/chemistry , Permeability , Phosphorus/chemistry , Porosity , Potassium/chemistry , Shear Strength , Stress, Mechanical
7.
PLoS One ; 13(12): e0209427, 2018.
Article in English | MEDLINE | ID: mdl-30596706

ABSTRACT

Collapsing gully erosion is the main important and specific soil erosion type in the red soil region of tropical and subtropical South China. Knowledge of the soil disintegration characteristics within different weathering profiles (surface layer, red soil layer, sandy soil layer and detritus layer) and its relationships with soil particle size distribution and soil properties is important in understanding the mechanism of the forming process and development of the collapsing gully. In this paper, we conducted an experiment on four collapsing gullies located four counties (Tongcheng County, Gan County, Anxi County and Wuhua County) in the hilly granitic region of southern China. The anti-disintegration ability of the different weathering profiles with two different moisture conditions (the air-dried condition and the natural state condition) were determined by the anti-disintegration index (Kc) and measured by the submerging test. The results show that the coarse particles are higher in the sandy soil layer and the detritus layer of collapsing gully than that in the surface layer and the red soil layer, but the finer particles show the inversed order. The Kc values reduce significantly from the surface layer to the detritus layer. In the surface layer and the red soil layer, the Kc values in the natural state condition are much higher than that in the air-dried condition. The results highlight that, the sandy soil layer and the detritus layer are easily to disintegrate compare with the surface layer and the red soil layer, and in the case of low soil water content, the soil in any layer of collapsing gully is easy to disintegrate. The regression equation shows a very significant and positive relationship between the Kc values and the < 0.002 mm particles contents and the SOM (soil organic matter) (p<0.01), and negative relationship between the Kc values and the contents of other soil particle size. The results revealed that the repulsive force produced by compressed air in the soil exceeds the suction between the soil particles is the predominant factor to soil disintegrate rates in the air-dried state condition. Whereas the soil contained a certain amount of water can reduce the degree of disintegration. The results also indicated that the more contents of the cementation agents (like clay and SOM) in the soil of the different layers of collapsing gully, the higher Kc values (it means the more difficult to disintegrate).


Subject(s)
Conservation of Natural Resources , Ecosystem , Soil , Water/chemistry , China , Environmental Monitoring , Humans , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...