Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Colloid Interface Sci ; 559: 263-272, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31634670

ABSTRACT

Tremendous efforts have been dedicated to developing sorbents for water remediation due to their high efficiency and non-secondary pollution. However, the majority of sorbents still face the challenges of complex processing, low mechanical strength and volume absorption. Hence, the functional hydrothermal carbonization coatings (HTCCs) were prepared on carbon fibers in carbon fiber braid via a facile hydrothermal carbonization process of widely sourced carbohydrate to obtain a robust sorbent, which possessed the controllable microstructure and composition for various requirements of water remediation. The gradient surface structure of carbon fiber braid with interior smooth coatings carbon fibers and exterior rough surface could be fabricated at pH value of 1. The HTCCs-carbon fiber braid had superior yield strength and compressive strength. By regulating the reaction process, the yield strength could range from 0.044 MPa to 0.235 MPa and the max compressive strength change from 0.198 MPa to 1.113 MPa. The HTCCs-carbon fiber braid showed excellent adsorption for Rhodamine B with a high removal degree of 98.5%, which kept more than 90% even after 10 squeezing adsorption cycles. The HTCCs-carbon fiber braid could be adjusted to effectively absorb oil pollutants from water by a facile heat treatment. After heat treatment, the HTCCs-carbon fiber braid exhibited excellent volume absorption capacity for contaminants, which could change from 83.9% to 88.5%. Thus, the HTCCs-carbon fiber braid prepared by a green, high-efficiency and low-cost process has great potential for sorption multiple contaminations in water by virtue of the combination of controllable carbonaceous coatings and robust carbon fiber braid.

2.
ACS Appl Mater Interfaces ; 9(20): 17337-17346, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28485921

ABSTRACT

Carbon nanofibers (CNFs) were grown around the carbon fiber architecture through a plasma enhanced chemical vapor deposition method to enhance the interface performance between CF architecture substrate and ZrC preceramic matrix. The synthesized 3D CF hierarchical architectures (CNFs-CF) are coated with zirconium carbide (ZrC) ceramic to enhance their antioxidant property and high temperature resistance. The composition and the crystalline phase structure of the composite were detected with the X-ray photoelectron spectroscopy and X-ray diffraction. The results of scanning electron microscopy show that, the as-prepared CNFs and consistent ZrC ceramic coating are uniformly covered on the surface of carbon fiber architecture substrate. The ZrC ceramic products with excellent crystallinity were got from the pyrolysis of preceramic polymer at 1600 °C in inert atmosphere. Comparing with the untreated CF, the loading of ZrC ceramics around the CNFs-CF architecture surface are significantly increased. The thermal stability and mechanical property of CNFs-CF/ZrC nanocomposites have been promoted obviously compared with the CF/ZrC ceramic nanocomposite. The prepared CNFs-CF/ZrC ceramic nanocomposite is one of the potential candidate materials for the thermal protection application.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(4): 1088-95, 2010 Apr.
Article in Chinese | MEDLINE | ID: mdl-20545168

ABSTRACT

Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...