Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastroenterol ; 27(32): 5404-5423, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34539141

ABSTRACT

BACKGROUND: Intestinal barrier breakdown, a frequent complication of intestinal ischemia-reperfusion (I/R) including dysfunction and the structure changes of the intestine, is characterized by a loss of tight junction and enhanced permeability of the intestinal barrier and increased mortality. To develop effective and novel therapeutics is important for the improvement of outcome of patients with intestinal barrier deterioration. Recombinant human angiopoietin-like protein 4 (rhANGPTL4) is reported to protect the blood-brain barrier when administered exogenously, and endogenous ANGPTL4 deficiency deteriorates radiation-induced intestinal injury. AIM: To identify whether rhANGPTL4 may protect intestinal barrier breakdown induced by I/R. METHODS: Intestinal I/R injury was elicited through clamping the superior mesenteric artery for 60 min followed by 240 min reperfusion. Intestinal epithelial (Caco-2) cells and human umbilical vein endothelial cells were challenged by hypoxia/ reoxygenation to mimic I/R in vitro. RESULTS: Indicators including fluorescein isothiocyanate-conjugated dextran (4 kilodaltons; FD-4) clearance, ratio of phosphorylated myosin light chain/total myosin light chain, myosin light chain kinase and loss of zonula occludens-1, claudin-2 and VE-cadherin were significantly increased after intestinal I/R or cell hypoxia/reoxygenation. rhANGPTL4 treatment significantly reversed these indicators, which were associated with inhibiting the inflammatory and oxidative cascade, excessive activation of cellular autophagy and apoptosis and improvement of survival rate. Similar results were observed in vitro when cells were challenged by hypoxia/reoxygenation, whereas rhANGPTL4 reversed the indicators close to normal level in Caco-2 cells and human umbilical vein endothelial cells significantly. CONCLUSION: rhANGPTL4 can function as a protective agent against intestinal injury induced by intestinal I/R and improve survival via maintenance of intestinal barrier structure and functions.


Subject(s)
Angiopoietin-Like Protein 4/pharmacology , Intestines , Reperfusion Injury , Caco-2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Intestinal Mucosa , Recombinant Proteins/pharmacology , Reperfusion Injury/prevention & control
2.
World J Gastroenterol ; 26(15): 1758-1774, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32351292

ABSTRACT

BACKGROUND: Intestinal ischemia reperfusion (I/R) occurs in various diseases, such as trauma and intestinal transplantation. Excessive reactive oxygen species (ROS) accumulation and subsequent apoptotic cell death in intestinal epithelia are important causes of I/R injury. PTEN-induced putative kinase 1 (PINK1) and phosphorylation of dynamin-related protein 1 (DRP1) are critical regulators of ROS and apoptosis. However, the correlation of PINK1 and DRP1 and their function in intestinal I/R injury have not been investigated. Thus, examining the PINK1/DRP1 pathway may help to identify a protective strategy and improve the patient prognosis. AIM: To clarify the mechanism of the PINK1/DRP1 pathway in intestinal I/R injury. METHODS: Male C57BL/6 mice were used to generate an intestinal I/R model via superior mesenteric artery occlusion followed by reperfusion. Chiu's score was used to evaluate intestinal mucosa damage. The mitochondrial fission inhibitor mdivi-1 was administered by intraperitoneal injection. Caco-2 cells were incubated in vitro in hypoxia/reoxygenation conditions. Small interfering RNAs and overexpression plasmids were transfected to regulate PINK1 expression. The protein expression levels of PINK1, DRP1, p-DRP1 and cleaved caspase 3 were measured by Western blotting. Cell viability was evaluated using a Cell Counting Kit-8 assay and cell apoptosis was analyzed by TUNEL staining. Mitochondrial fission and ROS were tested by MitoTracker and MitoSOX respectively. RESULTS: Intestinal I/R and Caco-2 cell hypoxia/reoxygenation decreased the expression of PINK1 and p-DRP1 Ser637. Pretreatment with mdivi-1 inhibited mitochondrial fission, ROS generation, and apoptosis and ameliorated cell injury in intestinal I/R. Upon PINK1 knockdown or overexpression in vitro, we found that p-DRP1 Ser637 expression and DRP1 recruitment to the mitochondria were associated with PINK1. Furthermore, we verified the physical combination of PINK1 and p-DRP1 Ser637. CONCLUSION: PINK1 is correlated with mitochondrial fission and apoptosis by regulating DRP1 phosphorylation in intestinal I/R. These results suggest that the PINK1/DRP1 pathway is involved in intestinal I/R injury, and provide a new approach for prevention and treatment.


Subject(s)
Dynamins/metabolism , Mesenteric Ischemia/pathology , Protein Kinases/metabolism , Reperfusion Injury/pathology , Animals , Apoptosis/genetics , Caco-2 Cells , Cell Hypoxia , Disease Models, Animal , Gene Knockdown Techniques , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Intestine, Small/blood supply , Intestine, Small/pathology , Male , Mesenteric Artery, Superior/surgery , Mesenteric Ischemia/etiology , Mice , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Phosphorylation/genetics , Protein Kinases/genetics , RNA, Small Interfering/metabolism , Reperfusion Injury/etiology , Serine/metabolism
3.
Chin Med J (Engl) ; 131(9): 1086-1091, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29692381

ABSTRACT

OBJECTIVE: Worldwide, community-acquired pneumonia (CAP) is a common infection that occurs in older adults, who may have pulmonary comorbidities, including chronic obstructive pulmonary disease (COPD). Although there have been clinical studies on the coexistence of CAP with COPD, there remain some controversial findings. This review presents the current status of COPD in CAP patients, including the disease burden, clinical characteristics, risk factors, microbial etiology, and antibiotic treatment. DATA SOURCES: A literature review included full peer-reviewed publications up to January 2018 derived from the PubMed database, using the keywords "community-acquired pneumonia" and "chronic obstructive pulmonary disease". STUDY SELECTION: Papers in English were reviewed, with no restriction on study design. RESULTS: COPD patients who are treated with inhaled corticosteroids are at an increased risk of CAP and have a worse prognosis, but data regarding the increased mortality remains unclear. Although Streptococcus pneumoniae is still regarded as the most common bacteria isolated from patients with CAP and COPD, Pseudomonas aeruginosa is also important, and physicians should pay close attention to the occurrence of antimicrobial resistance, particularly in these two organisms. CONCLUSIONS: COPD is a common and important predisposing comorbidity in patients who develop CAP. COPD often aggravates the clinical symptoms of patients with CAP, complicating treatment, but generally does not appear to affect prognosis.


Subject(s)
Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Community-Acquired Infections/microbiology , Community-Acquired Infections/mortality , Humans , Pneumonia/microbiology , Pneumonia/mortality , Pseudomonas aeruginosa/pathogenicity , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/mortality , Risk Factors , Streptococcus pneumoniae/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...