Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 23(1): 2-7, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32820935

ABSTRACT

We have disclosed a new type of [2.2]paracyclophanes that contain a 2-(dimesitylboryl)phenyl and a N,N-disubstituted amino groups at two different phenyl rings. They show intense circularly polarized luminescence combining high fluorescence efficiency (ΦF) and luminescence dissymmetry factor (|glum|), which are up to 0.93 and 1.73 × 10-2, respectively. In addition, the pseudo-meta derivatives display solvent-induced CPL sign inversion owing to the solvent-dependent excited-state dynamics.

2.
Chemistry ; 25(43): 10179-10187, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31141225

ABSTRACT

Temperature-dependent dual fluorescence with the anti-Kasha's rule is of great interest, but is a very challenging property to achieve in small organic molecules. The highly sensitive temperature-dependent dual fluorescence of 2,2'-bis(dimethylamino)-6,6'-bis(dimesitylboryl)-1,1'-binaphthyl (BNMe2 -BNaph), which essentially consists of two donor-π-acceptor (D-π-A) subunits, inspired the exploration of the importance of its structural features and the general utility of this molecular design. The reference compound MBNMe2 -BNaph, which lacks one electron-accepting Mes2 B, is found to show less sensitive temperature-dependent dual fluorescence, suggesting that the structure of BNMe2 -Bnaph, consisting of two symmetrical D-π-A subunits, is very important for achieving highly sensitive temperature-dependent dual fluorescence. In addition, it is found that another two 1,1'-binaphthyls, CHONMe2 -BNaph and CNNMe2 -BNaph, which also consist of two D-π-A subunits with Mes2 B groups replaced by CHO and CN, respectively, also show temperature-dependent dual fluorescence, with the fluorescence changing in a similar manner to BNMe2 -BNaph, indicating the general utility of the current molecular design for temperature-dependent dual fluorescence. Furthermore, the temperature-dependent dual fluorescence behaviors, such as the relative intensities of the two emission bands, the separation of the two emissions bands, and the sensitivity of the fluorescence intensity ratio to temperature, are greatly influence by the electron acceptors.

3.
Angew Chem Int Ed Engl ; 58(15): 4840-4846, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30675973

ABSTRACT

Temperature-dependent dual fluorescence and switchable circularly polarized luminescence (CPL) are two highly pursued but challenging properties for small organic molecules (SOMs). We herein disclose a triarylborane π-system based on a 2,2'-diamino-6,6'-diboryl-1,1'-binaphthyl scaffold that can serve as a versatile building block for achieving these two properties by simply choosing different amino groups. BNMe2 -BNaph with less bulky dimethylamino groups displays temperature-dependent dual fluorescence, and can thus be used as a highly sensitive ratiometric fluorescence thermometer. On the other hand, BNPh2 -BNaph with bulky diphenylamino groups exhibits intense fluorescence in both solution and in the solid state. A change of solvent from nonpolar cyclohexane to highly polar MeCN not only shifts the CPL position to much longer wavelength but also inverts the CPL sign. In addition, the complexation of BNPh2 -BNaph with fluoride greatly enhances the CPL intensity.

4.
Org Lett ; 20(23): 7590-7593, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30444376

ABSTRACT

The efficient synthetic route was disclosed to prepare structurally asymmetric [5]helicenes, which are substituted with either BMes2 (7B-HC) or both BMes2 and NMe2 (8B5NMe2-HC, 7B5NMe2-HC). Compared with the parent [5]helicene, these compounds show greatly enhanced fluorescence. In addition, they still retain fairly strong fluorescence in the solid state. Moreover, the complexation of 8B5NMe2-HC and 7B5NMe2-HC with fluoride can induce significant blue shift in fluorescence and the formed complexes are also highly fluorescent.

SELECTION OF CITATIONS
SEARCH DETAIL
...