Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
2.
J Hazard Mater ; 471: 134365, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669926

ABSTRACT

The disinfection of fabrics is crucial in preventing the spread of infectious diseases caused by pathogenic microorganisms to maintain public health. A previous study proved that plasma-activated nebulized mist (PANM) could effectively inactivate microorganisms both in aerosol and attached to the surface. In this study, the PANM driven by different plasma gases were employed to inactivate microorganisms on diverse fabrics. The PANM could efficiently inactivate a variety of microorganisms, including bacteria, fungi, and viruses, contaminating different fabrics, and even across covering layers of different fabrics. The mites residing on the cotton fabrics both uncovered and covered with various types of fabrics were also effectively inactivated by the PANM. After 30 times repeated treatments of the PANM, notable changes were observed in the color of several fabrics while the structural integrity and mechanical strength of the fabrics were unaffected and maintained similarly to the untreated fabrics with slight changes in elemental composition. Additionally, only trace amounts of nitrate remained in the fabrics after the PANM treatment. Therefore, the PANM treatment supplied an efficient, broad-spectrum, and environmentally friendly strategy for industrial and household disinfection of fabrics.


Subject(s)
Plasma Gases , Textiles , Plasma Gases/pharmacology , Animals , Disinfection/methods , Bacteria/drug effects , Fungi/drug effects , Nebulizers and Vaporizers , Viruses/drug effects
3.
J Am Chem Soc ; 146(18): 12601-12608, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38687243

ABSTRACT

The burgeoning necessity to discover new methodologies for the synthesis of long-chain hydrocarbons and oxygenates, independent of traditional reliance on high-temperature, high-pressure, and fossil fuel-based carbon, is increasingly urgent. In this context, we introduce a nonthermal plasma-based strategy for the initiation and propagation of long-chain carbon growth from biogas constituents (CO2 and CH4). Utilizing a plasma reactor operating at atmospheric room temperature, our approach facilitates hydrocarbon chain growth up to C40 in the solid state (including oxygenated products), predominantly when CH4 exceeds CO2 in the feedstock. This synthesis is driven by the hydrogenation of CO2 and/or amalgamation of CHx radicals. Global plasma chemistry modeling underscores the pivotal role of electron temperature and CHx radical genesis, contingent upon varying CO2/CH4 ratios in the plasma system. Concomitant with long-chain hydrocarbon production, the system also yields gaseous products, primarily syngas (H2 and CO), as well as liquid-phase alcohols and acids. Our finding demonstrates the feasibility of atmospheric room-temperature synthesis of long-chain hydrocarbons, with the potential for tuning the chain length based on the feed gas composition.

4.
Article in English | MEDLINE | ID: mdl-38429978

ABSTRACT

BACKGROUND AND HYPOTHESIS: An estimated 80% of individuals with chronic kidney disease (CKD) experience concomitant skin disorders, yet experimental research that elucidates the pathological changes in CKD-affected skin is limited. Cold atmospheric plasma (CAP) has shown promise in regulating keratinocyte proliferation, skin barrier function, and anti-inflammatory activity. We hypothesize that CAP emerges as a promising therapeutic avenue for CKD-related skin diseases. METHODS: Male and female C57/BL6 mice were administered a 0.2% adenine diet to generate a CKD mouse model. Skin samples from dialysis patients were also collected. These models were used to investigate the pathological alterations in the renal glomeruli, tubules, and epidermis. Subsequently, the potential impact of CAP on the stratum corneum, keratinocytes, skin hydration, and inflammation in mice with CKD were examined. RESULTS: Renal biopsies revealed glomerular and tubular atrophy, epithelial degeneration and necrosis in uriniferous tubules, and significant renal interstitial fibrosis. Skin biopsies from patients with CKD and mice showed stratum corneum thickening, epidermis atrophy, skin hydration dysfunction, and excessive inflammation. CAP attenuated skin atrophy, hydration dysfunction, and inflammation in mice with CKD, as evidenced by the activated level of YAP1/ß-catenin and Nrf-2/OH-1, enhanced expression of K5 and Ki67, increased levels of AQP3, collagen I, and GLUT1, reduced infiltration of CD3+ T cells, and diminished levels of IL-6 and TNF-α. CONCLUSION: This study provides valuable insights into the pathological changes in skin associated with CKD in both patients and animal models. It also establishes that CAP has the potential to effectively mitigate skin atrophy, hydration dysfunction, and inflammation, suggesting a novel therapeutic avenue for the treatment of CKD-related skin disorders.

5.
J Colloid Interface Sci ; 659: 878-885, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219306

ABSTRACT

Cocatalysts play a key role in improving photocatalytic performance by enhancing conductivity and providing an enormous number of active sites simultaneously. However, cocatalysts are usually made of noble metals such as Pt, which are expensive and rare. Therefore, cocatalysts derived from cheap and abundant elements are highly desirable. Here, for the first time, we demonstrate that NiCS3, which is made from nickel that is abundant and costs less than 0.04 % of Pt, is an effective substitute for Pt cocatalysts for the photocatalytic activity of CdS nanorods in hydrogen evolution reaction (HER). Under visible light, the NiCS3/CdS composite with NiCS3 as the cocatalyst achieved an astonishing H2 production of 61.9 mmol·g-1·h-1 while maintaining high stability, which is 14 times higher than that observed when using CdS alone and nearly 2 times higher than that of Pt/CdS. We also established that the metallicity of NiCS3 results in good carrier conductivity, which promotes the electron transfer and the separation of photo-induced carriers. Due to the appropriate adsorption energy ΔGH*, NiCS3 more readily adsorbs hydrogen protons and desorbs molecular hydrogen during the photocatalytic process compared with Pt. Additionally, NiCS3 can effectively inhibit the photo-corrosion effect of CdS itself, ensuring a good stability of HER. These results suggest that NiCS3 is a promising substitute for Pt cocatalysts.

6.
ChemSusChem ; 17(6): e202300783, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37994281

ABSTRACT

Ammonia plays a crucial role in industry and agriculture worldwide, but traditional industrial ammonia production methods are energy-intensive and negatively impact the environment. Ammonia synthesis using low-temperature plasma technology has gained traction in the pursuit of environment-benign and cost-effective methods for producing green ammonia. This Review discusses the recent advances in low-temperature plasma-assisted ammonia synthesis, focusing on three main routes: N2+H2 plasma-only, N2+H2O plasma-only, and plasma coupled with other technologies. The reaction pathways involved in the plasma-assisted ammonia synthesis, as well as the process parameters, including the optimum catalyst types and discharge schemes, are examined. Building upon the current research status, the challenges and research opportunities in the plasma-assisted ammonia synthesis processes are outlined. The article concludes with the outlook for the future development of the plasma-assisted ammonia synthesis technology in real-life industrial applications.

7.
Adv Sci (Weinh) ; 11(10): e2307746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145346

ABSTRACT

Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.


Subject(s)
Diabetes Mellitus , Hydrogels , Humans , Biomimetics , Proteomics , Wound Healing , Bandages
8.
J Am Chem Soc ; 145(51): 28233-28239, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38103175

ABSTRACT

By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.

9.
Adv Mater ; : e2308098, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37777858

ABSTRACT

Radioprotective agents hold clinical promises to counteract off-target adverse effects of radiation and benefit radiotherapeutic outcomes, yet the inability to control drug transport in human organs poses a leading limitation. Based upon a validated rank-based multigene signature model, radiosensitivity indices are evaluated of diverse normal organs as a genomic predictor of radiation susceptibility. Selective ORgan-Targeting (SORT) hafnium oxide nanoparticles (HfO2 NPs) are rationally designed via modulated synthesis by α-lactalbumin, homing to top vulnerable organs. HfO2 NPs like Hensify are commonly radioenhancers, but SORT HfO2 NPs exhibit surprising radioprotective effects dictated by unfolded ligands and Hf(0)/Hf(IV) redox couples. Still, the X-ray attenuation patterns allow radiological confirmation in target organs by dual-beam spectral computed tomography. SORT HfO2 NPs present potent antioxidant activities, catalytically scavenge reactive oxygen species, and mimic multienzyme catalytic activities. Consequently, SORT NPs rescue radiation-induced DNA damage in mouse and rabbit models and provide survival benefits upon lethal exposures. In addition to inhibiting radiation-induced mitochondrial apoptosis, SORT NPs impede DNA damage and inflammation by attenuating activated FoxO, Hippo, TNF, and MAPK interactive cascades. A universal methodology is proposed to reverse radioenhancers into radioprotectors. SORT radioprotective agents with image guidance are envisioned as compelling in personalized shielding from radiation deposition.

10.
J Hazard Mater ; 459: 132072, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37480605

ABSTRACT

The airborne microorganisms in the aerosols are one main transmission way of pathogenic microorganisms and therefore inactivation of microorganisms in aerosols could effectively prevent the transmission of pathogenic microorganisms to control epidemics. The mist nebulized by plasma-activated air could effectively inactivate bacteria and could be developed for the sterilization of microorganisms in aerosols. In this study, the plasma-activated nebulized mist (PANM) was applied for the inactivation of microorganisms in aerosols and efficiently inactivated the bacteria, yeast, and viruses in aerosols after 2-min treatment. The PANM treatment caused morphologic changes and damage to the bacteria cells in aerosols. The PANM could also inactivate the microorganisms attached to the surface of the treatment chamber and the bacteria attached to the skin of mice within 6-min treatment. The biosafety assays demonstrated that the PANM treatment exhibited no effects on the behavior, hematological and serum biochemical parameters of blood, and organs from the mice. This study would supply an efficient, broad-spectrum, and safe aerosol sterilization strategy based on plasma technology to prevent the transmission of airborne microorganisms.


Subject(s)
Biological Assay , Saccharomyces cerevisiae , Animals , Mice , Skin , Sterilization , Technology
11.
ACS Appl Mater Interfaces ; 15(18): 21804-21818, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37129251

ABSTRACT

Reactive oxygen species-mediated therapeutic strategies, including chemodynamic therapy (CDT) and photodynamic therapy (PDT), have exhibited translational promise for effective cancer management. However, monotherapy often ends up with the incomplete elimination of the entire tumor due to inherent limitations. Herein, we report a core-shell-structured Pd1.7Bi@CeO2-ICG (PBCI) nanoplatform constructed by a facile and effective strategy for synergistic CDT, PDT, and photothermal therapy. In the system, both Pd1.7Bi and CeO2 constituents exhibit peroxidase- and catalase-like characteristics, which not only generate cytotoxic hydroxyl radicals (•OH) for CDT but also produce O2 in situ and relieve tumor hypoxia for enhanced PDT. Furthermore, upon 808 nm laser irradiation, Pd1.7Bi@CeO2 and indocyanine green (ICG) coordinately prompt favorable photothermia, resulting in thermodynamically amplified catalytic activities. Meanwhile, PBCI is a contrast agent for near-infrared fluorescence imaging to determine the optimal laser therapeutic window in vivo. Consequently, effective tumor elimination was realized through the above-combined functions. The as-synthesized unitary PBCI theranostic nanoplatform represents a potential one-size-fits-all approach in multimodal synergistic therapy of hypoxic tumors.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Photothermal Therapy , Neoplasms/drug therapy , Combined Modality Therapy , Hypoxia/drug therapy , Cell Line, Tumor
12.
Adv Sci (Weinh) ; 10(14): e2207407, 2023 05.
Article in English | MEDLINE | ID: mdl-36929325

ABSTRACT

A continuous risk from microbial infections poses a major environmental and public health challenge. As an emerging strategy for inhibiting bacterial infections, plasma-activated water (PAW) has proved to be highly effective, environmental-friendly, and non-drug resistant to a broad range of microorganisms. However, the relatively short lifetime of reactive oxygen and nitrogen species (RONS) and the high spreadability of liquid PAW inevitably limit its real-life applications. In this study, plasma-activated hydrogel (PAH) is developed to act as reactive species carrier that allow good storage and controlled slow-release of RONS to achieve long-term antibacterial effects. Three hydrogel materials, including hydroxyethyl cellulose (HEC), carbomer 940 (Carbomer), and acryloyldimethylammonium taurate/VP copolymer (AVC) are selected, and their antibacterial performances under different plasma activation conditions are investigated. It is shown that the composition of the gels plays the key role in determining their biochemical functions after the plasma activation. The antimicrobial performance of AVC is much better than that of PAW and the other two hydrogels, along with the excellent stability to maintain the antimicrobial activity for more than 14 days. The revealed mechanism of the antibacterial ability of the PAH identifies the unique combination of short-lived species (1 O2 , ∙OH, ONOO- and O2 - ) stored in hydrogels. Overall, this study demonstrates the efficacy and reveals the mechanisms of the PAH as an effective and long-term disinfectant capable of delivering and preserving antibacterial chemistries for biomedical applications.


Subject(s)
Anti-Infective Agents , Disinfection , Hydrogels/chemistry , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers , Reactive Nitrogen Species
13.
Adv Healthc Mater ; 12(17): e2203011, 2023 07.
Article in English | MEDLINE | ID: mdl-36841552

ABSTRACT

Pancreatic cancer renders a principal cause of cancer mortalities with a dismal prognosis, lacking sufficiently safe and effective therapeutics. Here, diversified cyclodiaryliodonium (CDAI) NADPH oxidase (NOX) inhibitors are rationally designed with tens of nanomolar optimal growth inhibition, and CD44-targeted delivery is implemented using synthesized sulfated glycosaminoglycan derivatives. The self-assembled nanoparticle-drug conjugate (NDC) enables hyaluronidase-activatable controlled release and facilitates cellular trafficking. NOX inhibition reprograms the metabolic phenotype by simultaneously impairing mitochondrial respiration and glycolysis. Moreover, the NDC selectively diminishes non-mitochondrial reactive oxygen species (ROS) but significantly elevates cytotoxic ROS through mitochondrial membrane depolarization. Transcriptomic profiling reveals perturbed p53, NF-κB, and GnRH signaling pathways interconnected with NOX inhibition. After being validated in patient-derived pancreatic cancer cells, the anticancer efficacy is further verified in xenograft mice bearing heterotopic and orthotopic pancreatic tumors, with extended survival and ameliorated systemic toxicity. It is envisaged that the translation of cyclodiaryliodonium inhibitors with an optimized molecular design can be expedited by enzyme-activatable targeted delivery with improved pharmacokinetic profiles and preserved efficacy.


Subject(s)
NADPH Oxidases , Pancreatic Neoplasms , Humans , Mice , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Glycosaminoglycans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
14.
J Hazard Mater ; 446: 130686, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36610342

ABSTRACT

The global pandemic caused by SARS-CoV-2 has lasted two and a half years and the infections caused by the viral contamination are still occurring. Developing efficient disinfection technology is crucial for the current epidemic or infectious diseases caused by other pathogenic microorganisms. Gas plasma can efficiently inactivate different microorganisms, therefore, in this study, a combination of water spray and plasma-activated air was established for the disinfection of pathogenic microorganisms. The combined treatment efficiently inactivated the Omicron-pseudovirus through caused the nitration modification of the spike proteins and also the pathogenic bacteria. The combined treatment was improved with a funnel-shaped nozzle to form a temporary relatively sealed environment for the treatment of the contaminated area. The improved device could efficiently inactivate the Omicron-pseudovirus and bacteria on the surface of different materials including quartz, metal, leather, plastic, and cardboard and the particle size of the water spray did not affect the inactivation effects. This study supplied a disinfection strategy based on plasma-activated air for the inactivation of contaminated pathogenic microorganisms.


Subject(s)
COVID-19 , Water , Humans , SARS-CoV-2 , COVID-19/prevention & control , Disinfection , Bacteria
15.
Water Res ; 225: 119174, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36206683

ABSTRACT

Pathogenic microorganisms pose a global threat to public health and environment. Common antibacterial chemicals produce toxic residues, inevitably harming the environment. Electrolyzed oxidizing water (EOW), a promising environment-friendly alternative disinfectant, still lacks effective production processes, sufficient bactericidal efficacy and stability, while the enabling physico-chemical mechanisms remain unclear. Here, we report, for the first time, an effective hybrid plasma electrochemical EOW production process and reveal the mechanisms by combining nonthermal plasmas and a two-chamber electrochemical cell separated by a cation exchange membrane (CEM) for decoupling the chemical reactions during the plasma treatment of water. Experimental results demonstrate that combined chlorine (chloramine) was the main chlorine product in the plasma-enhanced EOW (P-EOW) without a membrane, owing to the consumption of free chlorine  (Cl2, HOCl, ClO-) by plasma-generated reactive nitrogen species. With a CEM in the plasma electrolysis system and through controlling the plasma discharge polarity, the production of free chlorine and other reactive species can be selectively controlled, with the highest concentration of free chlorine obtained in the negative plasma-enhanced EOW (NP-EOW). According to the transportation of cations by the CEM, the high concentrations of free chlorine may be attributed to the higher consuptions of H+ in cathode cell of negative plasma. The study of antibacterial ability of EOW produced under different conditions revealed that Staphylococcus aureus cells were best inactivated by the NP-EOW with CEM, which is mainly attributed to the higher concentration of free chlorine. This study demonstrates the feasibility of plasma-enhanced microbial electrolytic disinfection and offers new insights into the fundamental aspects of P-EOW chemistries for the future development of sustainable, efficient, and cost-effective multipurpose sustainable chemical technologies for water research and treatment.


Subject(s)
Disinfectants , Disinfection , Disinfection/methods , Water/chemistry , Chlorine , Chloramines , Electrolysis , Disinfectants/chemistry , Anti-Bacterial Agents/chemistry , Oxidation-Reduction , Reactive Nitrogen Species
16.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2379-2387, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36131653

ABSTRACT

Scientific irrigation is of great significance to plant seed production. With two excellent native plant species in desert steppe, Agropyron mongolicum and Lespedeza potaninii, as the objects, and full irrigation as the control, we explored the effects of deficit irrigation in different growth stages on the seed production and water use efficiency (WUE) of those two species. The results showed that, compared with the control, soil water content of both species decreased under deficit irrigation. The decrease of soil water content of A. mongolicum mainly occurred in the 0-60 cm soil layer, while there was no obvious stratification for the reduction of soil water content of L. potaninii. There were significant differences in the yield components of A. mongolica under deficit irrigation. The seed yield of deficit irrigation at the flowering stage was the highest. There were significant differences in the numbers of fertile tillers, florets and pods of L. potaninii among treatments, but no significant difference in seed yield. There were positive correlations between seed yield of A. mongolicum and the numbers of fertile tillers (r=0.776) and spikelets (r=0.717). The racemes of L. potaninii was significantly negatively correlated with the number of fertile tillers (r=-0.685), and positively correlated with the number of florets (r=0.412). Compared with full irrigation, water consumption of seed production of the two native plant species was reduced under deficit irrigation, but water use efficiency was improved, with the strongest improvement at the flowering stage of A. mongolicum (32.9%) and at the branching stage of L. potaninii (27.4%). Therefore, proper deficit irrigation could improve water use efficiency of both plant species. From the perspective of water use efficiency and seed yield, deficit irrigation could be used for artificial breeding of A. mongolicum and L. potaninii seeds in arid area, with the suitable growth stage for deficit being the flowering and the branching stages, respectively.


Subject(s)
Agricultural Irrigation , Water , Agricultural Irrigation/methods , Biomass , Plant Breeding , Seeds , Soil
17.
Langmuir ; 38(38): 11590-11599, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36107638

ABSTRACT

Metal-organic frameworks (MOFs), MIL-125 and UiO-66, were modified on the butterfly wings (BWs) by chemical bonds, and CdS was grown in situ on them through a solvothermal approach. The BWs enable the biocomposites to possess a wider (>600 nm) and stronger light absorption. The in situ growth method can produce highly active and stable biocomposites. These novel morphologic MOF/CdS biocomposites were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and so on. The resulting composites were tested for photocatalytic hydrogen production through water splitting with platinum and lactic acid as the co-catalyst and sacrificial agent, respectively. The two samples showed higher activity than bulk CdS, MOFs, or their composites. Therefore, this paper provides an appropriate method to obtain the MOF/CdS biocomposites, and the resulting biocomposites are proved to be efficient catalyst systems for hydrogen evolution from water under visible light with a wider wavelength.


Subject(s)
Hydrogen , Metal-Organic Frameworks , Hydrogen/chemistry , Lactic Acid , Phthalic Acids , Platinum , Water/chemistry
18.
J Hazard Mater ; 424(Pt D): 127658, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34802825

ABSTRACT

The release of toxic fluoride byproducts is a seemingly unavoidable artifact of surface engineering, causing severe environmental and human health problems. Here we propose and implement a new "upcycle hazard against other hazard" concept in the case study of cold atmospheric plasma surface modification of fluoropolymers such as polytetrafluorethylene (PTFE). Capitalizing on the excellent controllability, precision and energy efficiency of the plasma surface processing, complemented with the recently discovered ability of plasmas to activate water to produce a potent electrochemical disinfectant, referred to as the plasma-activated water (PAW), we demonstrate a radically new solution to capture the hazardous gaseous fluorides into the PAW and use the as-fluorinated PAW (F-PAW) as a very effective antimicrobial disinfectant. A customized surface discharge reactor is developed to evaluate the effects of fluorides released from the plasma etching of PTFE on the chemistries in gas-phase plasmas and F-PAW, as well as the antibacterial effect of F-PAW. The results show that gaseous fluorides, including COF2, CF3COF, and SiF4 are produced in gas-phase plasmas, and the dissolution of thus-generated fluorides into PAW has a strong effect on inactivating catalase and destroying the oxidation resistance of bacterial cells. As a result, the antibacterial effect of PAW-fluorides against the methicillin-resistant Staphylococcus aureus (MRSA) is enhanced by > 5 log reductions, suggesting that otherwise hazardous fluorides from the plasma processing of PTFE can be used to enhance the microbial disinfection efficiency of PAW. The demonstrated approach opens new avenues for sustainable hazard valorization exemplified by converting toxic fluoride-etching products into potent antimicrobial and potentially anti-viral disinfectants.


Subject(s)
Disinfectants , Methicillin-Resistant Staphylococcus aureus , Plasma Gases , Disinfectants/toxicity , Disinfection , Fluorides/toxicity , Humans
19.
Chem Sci ; 12(40): 13373-13378, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34777755

ABSTRACT

Due to increasing concentrations in the atmosphere, carbon dioxide has, in recent times, been targeted for utilisation (Carbon Capture Utilisation and Storage, CCUS). In particular, the production of CO from CO2 has been an area of intense interest, particularly since the CO can be utilized in Fischer-Tropsch synthesis. Herein we report that CO2 can also be used as a source of atomic oxygen that is efficiently harvested and used as a waste-free terminal oxidant for the oxidation of alkenes to epoxides. Simultaneously, the process yields CO. Utilization of the atomic oxygen does not only generate a valuable product, but also prevents the recombination of O and CO, thus increasing the yield of CO for possible application in the synthesis of higher-order hydrocarbons.

20.
Antibiotics (Basel) ; 10(8)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34439068

ABSTRACT

Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are life-threatening due to their strong multidrug resistance, especially since the biofilms formed by MRSA are more difficult to inactivate by antibiotics, causing long term recurrence of infection. Plasma-activated saline (PAS), a derived form of cold atmospheric-pressure plasma, can effectively inactivate bacteria and cancer cells and has been applied to sterilization and cancer treatment. Previous studies have demonstrated that the pretreatment of MRSA with PAS could promote the action of antibiotics. Here, the PAS was used as an antibiotic adjuvant to promote the inactivation of MRSA biofilms by rifampicin and vancomycin, and the combined treatment reduced approximately 6.0-log10 MRSA cells in biofilms. The plasma-activated saline and rifampicin synergistically and effectively reduced the systemic infection in the murine model. The histochemical analysis and the blood hematological and biochemical test demonstrated that the combined treatment with plasma-activated saline and rifampicin improved the blood hematological and biochemical parameters of infected mice by reducing the infection. Therefore, PAS based on plasma technology represents a new strategy for the treatment of infectious disease caused by multidrug-resistant bacteria and alleviating antibiotic resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...