Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 9(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419018

ABSTRACT

Deep learning is one of the most effective approaches to medical image processing applications. Network models are being studied more and more for medical image segmentation challenges. The encoder-decoder structure is achieving great success, in particular the Unet architecture, which is used as a baseline architecture for the medical image segmentation networks. Traditional Unet and Unet-based networks still have a limitation that is not able to fully exploit the output features of the convolutional units in the node. In this study, we proposed a new network model named TMD-Unet, which had three main enhancements in comparison with Unet: (1) modifying the interconnection of the network node, (2) using dilated convolution instead of the standard convolution, and (3) integrating the multi-scale input features on the input side of the model and applying a dense skip connection instead of a regular skip connection. Our experiments were performed on seven datasets, including many different medical image modalities such as colonoscopy, electron microscopy (EM), dermoscopy, computed tomography (CT), and magnetic resonance imaging (MRI). The segmentation applications implemented in the paper include EM, nuclei, polyp, skin lesion, left atrium, spleen, and liver segmentation. The dice score of our proposed models achieved 96.43% for liver segmentation, 95.51% for spleen segmentation, 92.65% for polyp segmentation, 94.11% for EM segmentation, 92.49% for nuclei segmentation, 91.81% for left atrium segmentation, and 87.27% for skin lesion segmentation. The experimental results showed that the proposed model was superior to the popular models for all seven applications, which demonstrates the high generality of the proposed model.

3.
J Healthc Eng ; 2018: 3654210, 2018.
Article in English | MEDLINE | ID: mdl-30631411

ABSTRACT

Minimally invasive surgery (MIS) minimizes the surgical incisions that need to be made and hence reduces the physical trauma involved during the surgical process. The ultimate goal is to reduce postoperative pain and blood loss as well as to limit the scarring area and hence accelerate recovery. It is therefore of great interest to both the surgeon and the patient. However, a major problem with MIS is that the field of vision of the surgeon is very narrow. We had previously developed and tested an MIS panoramic endoscope (MISPE) that provides the surgeon with a broader field of view. However, one issue with the MISPE was its low rate of video stitching. Therefore, in this paper, we propose using the region of interest in combination with the downsizing technique to improve the image-stitching performance of the MISPE. Experimental results confirm that, by using the proposed method, the image size can be increased by more than 160%, with the image resolution also improving. For instance, we could achieve performance improvements of 10× (CPU) and 23× (GPU) as compared to that of the original method.


Subject(s)
Image Processing, Computer-Assisted/methods , Minimally Invasive Surgical Procedures/methods , Algorithms , Animals , Endoscopy/methods , Phantoms, Imaging , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...