Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 11: 188, 2020.
Article in English | MEDLINE | ID: mdl-32180784

ABSTRACT

Improving the development of inferior grains is important for increasing maize yield under high-density conditions. However, the effect of micronutrients, especially zinc (Zn), on the development of inferior grains and maize yield under field conditions has not been evaluated to date. A field experiment with six Zn application rates (0, 2.3, 5.7, 11.4, 22.7, and 34.1 kg/ha) was conducted to investigate the effects of soil application of Zn fertilizer on the development of inferior grains. Pollen viability was measured at the tasseling stage. The maize spike was divided into apical (inferior grain), middle, and basal sections for further measurement at harvest. Results showed that soil application of Zn fertilizer increased maize yield by 4.2-16.7% due to increased kernel number and weight in the apical, but not in the middle and basal sections. Zn application also significantly increased pollen viability at the tasseling stage. The critical Zn concentrations in shoots at the tasseling stage for obtaining high pollen viability and high kernel numbers of inferior grains were 31.2 and 35.6 mg/kg, respectively. Zn application also increased the 1,000-kernel weight of inferior grain due to high biomass accumulation. Furthermore, the grain Zn concentration of inferior grain with Zn application increased by 24.3-74.9% compared with no Zn application. Thus, soil application of Zn fertilizer successfully increased grain yield of maize by improving pollen viability, kernel number, and kernel weight of inferior grains (apical section), also contributing to grain Zn biofortification.

2.
Environ Pollut ; 257: 113581, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31753641

ABSTRACT

Soil application of Zn fertilizer is an effective approach to improve yield and Zn accumulation in wheat grain. However, it remains unclear whether repeated Zn application can result in high accumulation of heavy metals (HMs) in soils and grains and thus represents a potential risk for human consumption. This study aimed to evaluate the health risk assessment of HMs in a wheat production system which had continuously received 8 years of Zn application at varying rates (0, 2.3, 5.7, 11.4, 22.7, 34.1 kg Zn ha-1). The results showed that Zn application significantly increased the soil total Zn concentration without affecting concentrations of As, Pb, Cd, Cu and Cr. Across Zn rates, Zn application increased grain concentrations of Zn, Pb and Cd by 75%, 51% and 14%, respectively, and reduced grain As concentration by 14%. The human health risk assessment revealed that the threshold hazard quotients for the individual HM were below 1, independent of Zn rates. The hazard index (HI) values at Zn rates of 11.4, 22.7 and 34.1 kg Zn ha-1 were significantly greater than that at null Zn treatment. Furthermore, exposures to As, Cu and Zn accounted for 97% of HI at all Zn rates. Analysis of the threshold cancer risk with Pb and As showed that ingestion of wheat grain even from highest Zn application rate wouldn't bring the lifetime carcinogenic risk. In contrast, long-term Zn application significantly reduced the carcinogenic risk of As by 9.7-26.5%. In conclusion, repeated soil applications of Zn at optimal rate (5.7 kg Zn ha-1) didn't cause health risk for Zn, Cu, Cd, Pb, Cr, and As, while improving productivity and grain Zn concentration of wheat to meet human recruitment. Our study highlights the importance of appropriate Zn fertilizer management in improving grain quality while reducing HMs risks from human consumption.


Subject(s)
Dietary Exposure , Environmental Monitoring , Fertilizers , Metals, Heavy/analysis , Soil Pollutants , Triticum/chemistry , Zinc , Cadmium , China , Humans , Lead , Risk Assessment , Soil
3.
Front Plant Sci ; 10: 1203, 2019.
Article in English | MEDLINE | ID: mdl-31632429

ABSTRACT

Nitrogen (N) supply could improve the grain yield of maize, which is of great importance to provide calories and nutrients in the diets of both humans and animals. Field experiments were conducted in 2009 and 2010 to investigate dynamic zinc (Zn) accumulation and the pre-silking and post-silking Zn uptake and their contributions to grain Zn accumulation of maize with different N supply under field conditions. Results showed that only 1.2% to 39.4% of grain Zn accumulation derived from pre-silking Zn uptake, with Zn remobilization being negatively affected by increasing N supply. However, post-silking Zn uptake (0.8-2.3 mg plant-1) and its substantial contribution to grain Zn accumulation (60.6%-98.8%) were progressively enhanced with the increasing N supply. Furthermore, grain Zn concentration was positively associated with grain N concentration (r = 0.752***), post-silking N uptake (r = 0.695***), and post-silking Zn uptake (r = 738***). A significant positive relationship was also found between post-silking uptake of N and Zn (r = 0.775***). These results suggest that N nutrition is a critical factor for shoot Zn uptake and its allocation to maize grain. Dry weight, and N and Zn concentration of grain and straw were significantly enhanced with the increasing N from "no N" to "optimal N" supply (150 kg N ha-1 in 2009 and 105 kg N ha-1 in 2010), but further increasing N supply (250 kg N ha-1) generally resulted in a non-significant increase in both cropping seasons. During the grain development, N supply also generally tended to improve grain N and Zn concentrations, but decrease phosphorus (P) concentration and the molar ratio of P to Zn compared with null N application. These results suggest that grain Zn accumulation mainly originates from post-silking Zn uptake. Applying N at optimal rates ensures better shoot Zn nutrition and contributes to post-silking Zn uptake, maintaining higher grain Zn availability by decreasing the molar ratio of P to Zn, and resulting in benefits to human nutrition.

4.
Front Plant Sci ; 10: 426, 2019.
Article in English | MEDLINE | ID: mdl-31057568

ABSTRACT

Effect of zinc (Zn) application to soil on root growth and Zn uptake and translocation in winter wheat are poorly understood. This study evaluated the effect of soil Zn fertilization (0, 2.3, 5.7, 11.4, 22.7, 34.1 kg of Zn ha-1) on root growth and distribution, crop Zn uptake, root-to-shoot translocation of Zn, and remobilization of Zn from shoot to grain. Results of this study revealed that Zn application ≤11.4 kg ha-1 significantly increased root dry weight, root length density, and root surface area within 0-30 cm soil depth and higher rates of Zn application caused slight decreases in these root parameters. Shoot biomass and shoot Zn accumulation increased as Zn application rate increased mainly because of improved matching of root growth and enhanced availability of Zn in the topsoil layer. Post-anthesis Zn uptake by shoot increased and translocation of Zn from root to shoot decreased as rate of Zn application increased. The degree to which Zn accumulation in grain resulted from pre-anthesis remobilization vs. post-anthesis shoot uptake depended on Zn availability in soil; post-anthesis shoot uptake dominated at DTPA-Zn concentrations >7.15 mg kg-1, and pre-anthesis remobilization dominated at lower soil Zn levels. In conclusion, Zn uptake, translocation and remobilization to grain were affected by root growth and its matching with the availability of soil Zn. The results suggest that soils similar to the study soil should be fertilized to 30 cm depth with about 11.4 kg ha-1 Zn in order to obtain high yield and grain Zn concentration of wheat.

6.
Sci Rep ; 7(1): 7016, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28765540

ABSTRACT

Increasing grain zinc (Zn) concentration of cereals for minimizing Zn malnutrition in two billion people represents an important global humanitarian challenge. Grain Zn in field-grown wheat at the global scale ranges from 20.4 to 30.5 mg kg-1, showing a solid gap to the biofortification target for human health (40 mg kg-1). Through a group of field experiments, we found that the low grain Zn was not closely linked to historical replacements of varieties during the Green Revolution, but greatly aggravated by phosphorus (P) overuse or insufficient nitrogen (N) application. We also conducted a total of 320-pair plots field experiments and found an average increase of 10.5 mg kg-1 by foliar Zn application. We conclude that an integrated strategy, including not only Zn-responsive genotypes, but of a similar importance, Zn application and field N and P management, are required to harvest more grain Zn and meanwhile ensure better yield in wheat-dominant areas.


Subject(s)
Agriculture/methods , Edible Grain/chemistry , Triticum/chemistry , Triticum/growth & development , Zinc/analysis , Fertilizers , Genotype , Humans , Nitrogen/metabolism , Phosphorus/metabolism , Triticum/genetics , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL