Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2954-2963, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166401

ABSTRACT

HfO2-ZrO2 ferroelectric films have recently gained considerable attention from integrated circuit researchers due to their excellent ferroelectric properties over a wide doping range and low deposition temperature. In this work, different HfO2-ZrO2 superlattice (SL) FE films with varying periodicity of HfO2 (5 cycles)-ZrO2 (5 cycles) (SL5), HfO2 (10 cycles)-ZrO2 (10 cycles) (SL10), and HfO2 (15 cycles)-ZrO2 (15 cycles) (SL15) were studied systematically. The HfZrOx (HZO) alloy was used as a comparison device. The SL5 film demonstrated improved ferroelectric properties compared to the HZO film, with the 2 times remnant polarization (2Pr) values increasing from 41.4 to 48.6 µC/cm2 at an applied voltage of 3 V/10 kHz. Furthermore, the first-order reversal curve diagrams of different SL and HZO capacitors at different states (initial, wake-up, fatigue, and recovery) were measured. The SL capacitors were found to effectively suppress the diffusion of defects during P-V cycling, resulting in improved fatigue stability characteristics and fatigue recovery capability compared to the HZO capacitor. Moreover, an improved switching speed of the SL films compared to the HZO capacitor was concluded based on the inhomogeneous field mechanism (IFM) model. These results indicate that the SL structure has a high potential in future high-speed ferroelectric memory applications with excellent stability and recovery capability.

2.
Nanotechnology ; 35(9)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38035384

ABSTRACT

HfO2-based ferroelectric field-effect transistors (FeFETs) are a promising candidate for multilevel memory manipulation and brain-like computing due to the multi-domain properties of the HfO2FE films based polycrystalline structure. Although there have been many reports on the working mechanism of the HfO2-based FeFET and improving its reliability, the impact of multi-domain effect on the effective carrier mobility (µchannel) has not been carried out yet. The effectiveµchanneldetermines the level of readout current and affects the accuracy of the precision of peripheral circuit. In this work, FeFETs with HfZrOxFE gate dielectric were fabricated, and the effect of write (or erase) pulses with linear gradient variation on the effectiveµchannelwas studied. For the multiple downward polarization under write pulses, theµchanneldegrades as the domains gradually switch to downward. This is mainly due to the enhancement of the scattering effect induced by the positive charges (e.g. oxygen vacanciesVO2+) trapping and the increase of channel carrier density. For the erase pulses, theµchannelincreases as the domains gradually reverse to upward, which is mainly due to the reduction of the scattering effect induced by the detrapping of positive charges and the decrease of channel carrier density. In addition, the modulation effect of multilevel polarization states onµchannelis verified by numerical simulation. This effect provides a new idea and solution for the development of low power HfO2-based FeFETs in neuromorphic computing.

3.
Discov Nano ; 18(1): 20, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36809397

ABSTRACT

This study theoretically demonstrated the oxygen vacancy (VO2+)-based modulation of a tunneling junction memristor (TJM) with a high and tunable tunneling electroresistance (TER) ratio. The tunneling barrier height and width are modulated by the VO2+-related dipoles, and the ON and OFF-state of the device are achieved by the accumulation of VO2+ and negative charges near the semiconductor electrode, respectively. Furthemore, the TER ratio of TJMs can be tuned by varying the density of the ion dipoles (Ndipole), thicknesses of ferroelectric-like film (TFE) and SiO2 (Tox), doping concentration (Nd) of the semiconductor electrode, and the workfunction of the top electrode (TE). An optimized TER ratio can be achieved with high oxygen vacancy density, relatively thick TFE, thin Tox, small Nd, and moderate TE workfunction.

4.
Nanoscale Res Lett ; 15(1): 134, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32572644

ABSTRACT

Traditional ferroelectric devices suffer a lack of scalability. Doped HfO2 thin film is promising to solve the scaling problem but challenged by high leakage current and uniformity concern by the polycrystalline nature. Stable ferroelectric-like behavior is firstly demonstrated in a 3.6-nm-thick amorphous Al2O3 film. The amorphous Al2O3 devices are highly scalable, which enable multi-gate non-volatile field-effect transistor (NVFET) with nanometer-scale fin pitch. It also possesses the advantages of low process temperature, high frequency (~GHz), wide memory window, and long endurance, suggesting great potential in VLSI systems. The switchable polarization (P) induced by the voltage-modulated oxygen vacancy dipoles is proposed.

5.
J Colloid Interface Sci ; 553: 613-621, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31247500

ABSTRACT

In this study, branch-like SnO2@ZnO heterojunction photocatalyst was successfully fabricated via a simple two-step hydrothermal process. The optical and electronic properties were characterized in detail and the results indicated that SnO2@ZnO nanocomposites (TZNCs) exhibited superior photocatalytic performance under visible light irradiation as compared to pure SnO2 and ZnO. The excellent photocatalytic performance of TZNCs can be ascribed to the heterojunction structure between ZnO and SnO2 which depresses the recombination of photogenerated electron-hole pairs. In addition, the branch-like morphology can provide large specific surface. Moreover, the density functional theory (DFT) computation on the Fermi level results confirmed that heterojunction structure between ZnO and SnO2 is more favor of the transfer of photogenerated eletrons from ZnO to SnO2, effectively improving separation of photogenerated electron-hole pairs. Noteworthy, this work would pave the route for the two semiconductor materials with a big work function difference which would lead to the high contact potential difference, surely contributing to improving the performance of photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...