Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(7): 678, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954106

ABSTRACT

Understanding the spatiotemporal changes in net primary productivity (NPP) and the driving factors behind these changes in climate-vulnerable regions is crucial for ecological conservation. This study simulates the actual NPP (NPPA) and climate potential NPP (NPPC) in the Three-River Headwaters Region from 2000 to 2020. The Theil-Sen Median method and Mann-Kendall mutation analyses are employed to explore their spatiotemporal variation patterns, while geographic weighted regression and machine learning are used to investigate the influence of anthropogenic activities and climatic factors on NPPA, the results indicate that the average NPPA across the entire region over multiple years is 382.506 g C m - 2 yr - 1 , which is 0.132 times the average annual NPPC over the past 21 years, showing an overall distribution pattern of low in the northwest and high in the southeast. The annual increase in NPPA from 2000 to 2020 is approximately 1.034 g C m - 2 yr - 1 . The source region of the Yangtze River shows the largest improvement in vegetation, with 74.1% of the area showing improvement. Between 2002 and 2003, the annual NPPA in the Three-River Headwaters Region experienced a sudden change, lagging behind the NPPC change by 1 year, and after 2005, the upward trend in NPPA became more pronounced. The impact of anthropogenic activities on NPPA shifted from positive to negative to positive from 2000 to 2020, with significant impact areas mainly concentrated in the northeast and a few areas in the central and southern parts. The proportion of areas with extremely significant impact increased from 1.9% in 2000 to 3.7% in 2020. Over the past 21 years, the main factors influencing NPPA changes in the Three-River Headwaters Region have been soil moisture and precipitation, with the influence of different climate factors on NPP changing over time. Additionally, NPP is more sensitive to changes in altitude in low-altitude areas. This study can provide more accurate theoretical support for ecological environment assessment and subsequent protection efforts in the Three-River Headwaters Region.


Subject(s)
Environmental Monitoring , Rivers , Rivers/chemistry , Climate Change , Anthropogenic Effects , China , Ecosystem
3.
Environ Geochem Health ; 45(11): 8203-8219, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37555879

ABSTRACT

Some soils in the Yueliangbao gold mining area have been contaminated by heavy metals, resulting in variations in vegetation. Hyperspectral remote sensing provides a new perspective for heavy metal inversion in vegetation. In this paper, we collected ground truth spectral data of three dominant vegetation species, Miscanthus floridulus, Equisetum ramosissimum and Eremochloa ciliaris, from contaminated and healthy non-mining areas of the Yueliangbao gold mining region, and determined their heavy metal contents. Firstly, we compared the spectral characteristics of vegetation in the mining and non-mining areas by removing the envelope and derivative transformation. Secondly, we extracted their characteristic identification bands using the Mahalanobis distance and PLS-DA method. Finally, we constructed the inverse model by selecting the vegetation index (such as the PRI, DCNI, MTCI, etc.) related to the characteristic band combined with the heavy metal content. Compared to previous studies, we found that the pollution level in the Yueliangbao gold mining area had greatly reduced, but arsenic metal pollution remained a serious issue. Miscanthus floridulus and Eremochloa ciliaris in the mining area exhibited obvious arsenic stress, with a large "red-edge blue shift" (9 and 6 nm). The extracted characteristic wavebands were around 550 and 680-740 nm wavelengths, and correlation analysis showed significant correlations between vegetation index and arsenic, allowing us to construct a prediction model for arsenic and realize the calculation of heavy metal content using vegetation spectra. This provides a methodological basis for monitoring vegetation pollution in other gold mining areas.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Arsenic/toxicity , Arsenic/analysis , Gold/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Mining , Poaceae , Soil , Environmental Monitoring/methods , China
4.
J Fish Biol ; 103(1): 4-12, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37054975

ABSTRACT

Fish skin is the first barrier against external invasion, and also an important interface for communication between males and females during reproduction. Nonetheless, sexual dimorphism in the physiology of fish skins is still poorly understood. Herein, transcriptomes of skin were comparatively analysed between males and females in spinyhead croaker, Collichthys lucidus. Totally, 170 differentially expressed genes (DEG) were detected, including 79 female-biased genes and 91 male-biased genes. Gene ontology (GO) annotation items of the DEGs were mainly enriched in biological process items (86.2%), including regulation of biological processes, responses to chemical and biological stimuli, transport and secretion, movement, immune response, tissue development, etc. In KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, the male-biased genes were enriched in pathways including those related to immunity such as the TNF signalling pathway and IL-17 signalling pathway, whereas the female-biased genes were enriched in pathways including those related to female steroids such as ovarian steroidogenesis and oestrogen signalling pathway. In addition, odf3 was found to be a male-specific expression gene, being a candidate marker for phenotypic sex. Thus, the sexual difference in gene expression in fish skin in spawning season was uncovered by transcriptome analysis for the first time, providing new insights into sexual dimorphism in the physiology and functions of fish skin.


Subject(s)
Perciformes , Transcriptome , Female , Male , Animals , Sexism , Gene Expression Profiling , Perciformes/genetics , Skin
5.
J Fish Biol ; 100(1): 15-24, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34553785

ABSTRACT

Sox genes encode transcription factors with a high-mobility group (HMG) box, playing critical roles in the initiation and maintenance of a variety of developmental processes, such as sex determination and differentiation. In the present study, we identified 26 Sox genes in the genome of spinyhead croaker Collichthys lucidus (Richardson, 1844) with homology-based analysis of the HMG box. The transcriptome-based expression profiles revealed that the expression of the Sox gene in gonads began to differ between sexes when the body length was 2.74 ± 0.24 cm. At that time, three Sox genes (Sox11b, Sox8a and Sox19) were significantly upregulated, accompanied by the downregulation of 12 Sox genes in the ovary, and six Sox genes were temporarily significantly upregulated in the testis. Afterwards, the expression profile of Sox genes changed only with a small amplitude in both the ovary and testis. For adult tissues, huge differences were observed in the expression profiles of Sox genes between ovaries and testes, as well as small differences in somatic tissues between sexes. These results provide clues to further decipher the role of Sox genes in the processes of sex determination and differentiation in spinyhead croaker and other teleosts.


Subject(s)
Perciformes , Transcriptome , Animals , Female , Gene Expression Profiling , Genome , Gonads , Male , Perciformes/genetics
6.
Sci Data ; 6(1): 132, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31341172

ABSTRACT

Collichthys lucidus (C. lucidus) is a commercially important marine fish species distributed in coastal regions of East Asia with the X1X1X2X2/X1X2Y multiple sex chromosome system. The karyotype for female C. lucidus is 2n = 48, while 2n = 47 for male ones. Therefore, C. lucidus is also an excellent model to investigate teleost sex-determination and sex chromosome evolution. We reported the first chromosome genome assembly of C. lucidus using Illumina short-read, PacBio long-read sequencing and Hi-C technology. An 877 Mb genome was obtained with a contig and scaffold N50 of 1.1 Mb and 35.9 Mb, respectively. More than 97% BUSCOs genes were identified in the C. lucidus genome and 28,602 genes were annotated. We identified potential sex-determination genes along chromosomes and found that the chromosome 1 might be involved in the formation of Y specific metacentric chromosome. The first C. lucidus chromosome-level reference genome lays a solid foundation for the following population genetics study, functional gene mapping of important economic traits, sex-determination and sex chromosome evolution studies for Sciaenidae and teleosts.


Subject(s)
Perciformes/genetics , Sex Chromosomes , Animals , Chromosome Mapping , Female , Genome , High-Throughput Nucleotide Sequencing , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...