Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805022

ABSTRACT

Presodiation has shown great promise in compensating sodium storage losses. In the absence of a mechanistic understanding of how presodiation affects the surface of an electrode material, packaging optimization is restricted. Focusing on interfaces, we illustrate the working principle of presodiation in virtue of short-circuiting internal circuits. The presodiated carbon nanotubes (PS-CNTs) provide a thin, denser, and more robust solid electrolyte interfacial layer, enabling a high initial Coulombic efficiency (ICE), high power density, and cycling stability with the merits of uniformly distributed NaF. As a result, our assembled sodium-ion battery (SIB) full cell with PS-CNT has an ICE of 91.6% and an energy density of 226 Wh kg-1, which was superior to the pristine CNT control electrode (ICE of 42.9% and energy density of 163 Wh kg-1). The gained insights can be practically applied to directly promote the commercial uses of carbon-based materials in sodium-ion batteries.

2.
Angew Chem Int Ed Engl ; : e202405592, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647330

ABSTRACT

In aqueous aluminum-ion batteries (AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydronium ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.

3.
Heliyon ; 9(10): e20704, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37842595

ABSTRACT

Real estate majorly contributes to the national gross domestic product (GDP) growth, occupying an important position in the national economy. It is the largest fixed asset for households. The real estate market is associated with a wide range of economic aspects with more upstream and downstream enterprises. Simultaneously, the factors affecting the real estate market are complex and variable. Fluctuations in the real estate market affect the entire economic system. This requires the government to formulate relevant housing policies to stabilize the operation of the real estate market. Therefore, it is meaningful to study the impact of housing policies on the real estate market and provide reasonable opinions for the housing sector in formulating policies. This study adopts a systematic quantitative literature review to examine the impact of housing policies on the real estate market. This study finds that housing policies affecting the real estate market can be divided into the following three categories: monetary, tax, and macro-prudential policies. Changes in supply and demand in the real estate market primarily reflect the effectiveness of policies, with housing price factors as the transmission mechanism. Furthermore, the influence of housing policies from different countries and regions on real estate market factors is compared to provide a reference for scholars to pursue further study.

4.
Nano Lett ; 23(11): 5307-5316, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37276017

ABSTRACT

The dissolution of transition metal ions causes the notorious peeling of active substances and attenuates electrochemical capacity. Frustrated by the ceaseless task of pushing a boulder up a mountain, Sisyphus of the Greek myth yearned for a treasure to be unearthed that could bolster his efforts. Inspirationally, by using ferricyanide ions (Fe(CN)63-) in an electrolyte as a driving force and taking advantage of the fast nucleation rate of copper hexacyanoferrate (CuHCF), we successfully reversed the dissolution of Fe and Cu ions that typically occurs during cycling. The capacity retention increased from 5.7% to 99.4% at 0.5 A g-1 after 10,000 cycles, and extreme stability of 99.8% at 1 A g-1 after 40,000 cycles was achieved. Fe(CN)63- enables atom-by-atom substitution during the electrochemical process, enhancing conductivity and reducing volume change. Moreover, we demonstrate that this approach is applicable to various aqueous batteries (i.e., NH4+, Li+, Na+, K+, Mg2+, Ca2+, and Al3+).

5.
Nanotechnology ; 34(4)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36265436

ABSTRACT

The flexible strain sensor is an indispensable part in flexible integrated electronic systems and an important intermediate in external mechanical signal acquisition. The 3D printing technology provides a fast and cheap way to manufacture flexible strain sensors. In this paper, a MWCNTs/flexible resin composite for photocuring 3D printing was prepared using mechanical mixing method. The composite has a low percolation threshold (1.2%ωt). Based on the composite material, a flexible strain sensor with high performance was fabricated using digital light processing technology. The sensor has a GF of 8.98 under strain conditions ranging between 0% and 40% and a high elongation at break (48%). The sensor presents mechanical hysteresis under cyclic loading. With the increase of the strain amplitude, the mechanical hysteresis becomes more obvious. At the same time, the resistance response signal of the sensor shows double peaks during the unloading process, which is caused by the competition of disconnection and reconstruction of conductive network in the composite material. The test results show that the sensor has different response signals to different types of loads. Finally, its practicability is verified by applying it to balloon pressure detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...