Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 374: 128656, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36690216

ABSTRACT

Osmotic stress priming (OSP) was an effective management strategy for improving microbial acclimation to salt stress. In this study, the interaction between pollutants and microbiota, and microbial osmoregulation were investigated triggered by OSP (alternately increasing salinity and organic loading). Results showed that OSP significantly improved COD removal from 31.53 % to 67.99 % and mitigated the terephthalate inhibition produced by toluate, decreasing from 1908.08 mg/L to 837.16 mg/L compared with direct priming. Due to an increase in salinity, Pelotomaculum and Mesotoga were enriched to facilitate terephthalate degradation and syntrophic acetate oxidation (SAO). And organic load promoted acetate formation through syntrophic metabolism of Syntrophorhabdus/Pelotomaculum and SAO-dependent hydrogenotrophic methanogenesis. K+ absorbing, proline and trehalose synthesis participated in osmoregulation at 0.5 % salinity, while only ectoine alleviated intracellular osmolarity under 1.0 % salinity with OLR of 0.44 kg COD /m3. This study provided in-depth insight for microbial acclimation process of anaerobic priming of saline wastewater.


Subject(s)
Salinity , Water Purification , Osmotic Pressure , Acclimatization , Anaerobiosis , Water Purification/methods , Bioreactors
2.
Chemosphere ; 311(Pt 2): 137008, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36377119

ABSTRACT

Little research was focused on the anerobic degradation of refractory para-toluic acid at present. Thus, temperature-regulated anaerobic system of para-toluic acid fed as sole substrate was built and investigated via microbiota, metabolism intermediates, and function prediction in this study. Results showed that low methane yield was produced in para-toluic acid anaerobic system at alkaline condition. And the causes were owing to anaerobic methane oxidation and potentially H2S production at 37 °C, N2 production by denitrification before starvation and propionic acid occurrence after starvation at 27 °C, and production of N2 and free ammonia, and accumulation of acetic acid at 52 °C. Simultaneously, hydrogenotrophic methanogenesis dependent on syntrophic acetate oxidation (SAO) was predominant, facilitating the removal of para-toluic acid at 52 °C. Moreover, the key intermediate changed from phthalic acid of 37 °C and 27 °C before starvation to terephthalic acid of 52 °C. Starvation promoted removal of para-toluic acid through benzoyl-CoA pathway by Syntrophorhabdus, enrichment of syntrophic propionate degraders of Bacteroidetes and Ignavibacteriaceae, and increase of methylotrophic methanogens.

3.
J Hazard Mater ; 383: 121132, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31518813

ABSTRACT

To investigate the effect of salinity (1% sodium chloride) on anaerobic microbial community structure in high strength telephthalic wastewater treatment system, the performances of anaerobic-aerobic process and the shifts of microbial community in anaerobic tank were studied and determined. Results showed that the chemical oxygen demand (COD) removal in the whole process remained above 90%. And the effluent concentrations of targeted pollutants were lower than 10 mg/L, other than para-toluic acid (PT, 38.09 mg/L). However, methane production significantly decreased compared to no salinity situation. This might be due to the inhibition of salinity on methanogens, which hindered the conversion of acetate to methane. Furthermore, the dominant genus in bacterial level changed from Tepidisphaera to Syntrophus, which facilitated the syntrophic association with hydrogenotrophic methanogens. The prevailed archaea remained acetoclastic Methanothrix above 90%. Therefore, the salinity on anaerobic microbial community structure mainly reflects in the methanogen process, remarkably decreasing methane production.


Subject(s)
Anaerobiosis , Microbiota , Phthalic Acids/chemistry , Salinity , Water Purification/methods
4.
Chemosphere ; 184: 951-959, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28655114

ABSTRACT

Over recent years, thermophilic digestion was constantly focused owing to its various advantage over mesophilic digestion. Notably, the startup approach of thermophilic digester needs to be seriously considered as unsuitable startup ways may result in system inefficiency. In this study, one-step temperature increase startup strategy from 37 °C to 55 °C was applied to establish a thermophilic anaerobic system treating terephthalic acid (TA) contained wastewater, meanwhile, the archaeal and bacterial community compositions at steady periods of 37 °C and 55 °C during the experimental process was also compared using Illumina Miseq Sequencing. The process operation demonstrated that the thermophilic TA degradation system was successfully established at 55 °C with over 95% COD reduction. For archaea community, the elevation of operational temperature from 37 °C to 55 °C accordingly increase the enrichment of hydrogenotrophic methanogens but decrease the abundance of the acetotrophic ones. While for bacterial community, the taxonomic analysis suggested that Syntrophorhabdus (27.40%) was the dominant genus promoting the efficient TA degradation under mesophilic condition, whereas OPB95 (24.99%) and TA06 (14.01%) related populations were largely observed and probably take some crucial role in TA degradation under thermophilic condition.


Subject(s)
Phthalic Acids/metabolism , Anaerobiosis , Archaea , Bacteria , Bioreactors/microbiology , Phthalic Acids/analysis , Phthalic Acids/chemistry , Sewage/microbiology , Temperature , Waste Disposal, Fluid/methods , Wastewater/analysis , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL