Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.930
Filter
1.
Int J Ophthalmol ; 17(3): 408-419, 2024.
Article in English | MEDLINE | ID: mdl-38721504

ABSTRACT

AIM: To quantify the performance of artificial intelligence (AI) in detecting glaucoma with spectral-domain optical coherence tomography (SD-OCT) images. METHODS: Electronic databases including PubMed, Embase, Scopus, ScienceDirect, ProQuest and Cochrane Library were searched before May 31, 2023 which adopted AI for glaucoma detection with SD-OCT images. All pieces of the literature were screened and extracted by two investigators. Meta-analysis, Meta-regression, subgroup, and publication of bias were conducted by Stata16.0. The risk of bias assessment was performed in Revman5.4 using the QUADAS-2 tool. RESULTS: Twenty studies and 51 models were selected for systematic review and Meta-analysis. The pooled sensitivity and specificity were 0.91 (95%CI: 0.86-0.94, I2=94.67%), 0.90 (95%CI: 0.87-0.92, I2=89.24%). The pooled positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 8.79 (95%CI: 6.93-11.15, I2=89.31%) and 0.11 (95%CI: 0.07-0.16, I2=95.25%). The pooled diagnostic odds ratio (DOR) and area under curve (AUC) were 83.58 (95%CI: 47.15-148.15, I2=100%) and 0.95 (95%CI: 0.93-0.97). There was no threshold effect (Spearman correlation coefficient=0.22, P>0.05). CONCLUSION: There is a high accuracy for the detection of glaucoma with AI with SD-OCT images. The application of AI-based algorithms allows together with "doctor+artificial intelligence" to improve the diagnosis of glaucoma.

2.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731600

ABSTRACT

Rosa roxburghii Tratt pomace is rich in insoluble dietary fiber (IDF). This study aimed to investigate the influence of three modification methods on Rosa roxburghii Tratt pomace insoluble dietary fiber (RIDF). The three modified RIDFs, named U-RIDF, C-RIDF, and UC-RIDF, were prepared using ultrasound, cellulase, and a combination of ultrasound and cellulase methods, respectively. The structure, physicochemical characteristics, and functional properties of the raw RIDF and modified RIDF were comparatively analyzed. The results showed that all three modification methods, especially the ultrasound-cellulase combination treatment, increased the soluble dietary fiber (SDF) content of RIDF, while also causing a transition in surface morphology from smooth and dense to wrinkled and loose structures. Compared with the raw RIDF, the modified RIDF, particularly UC-RIDF, displayed significantly improved water-holding capacity (WHC), oil-binding capacity (OHC), and swelling capacity (SC), with increases of 12.0%, 84.7%, and 91.3%, respectively. Additionally, UC-RIDF demonstrated the highest nitrite ion adsorption capacity (NIAC), cholesterol adsorption capacity (CAC), and bile salt adsorption capacity (BSAC). In summary, the combination of ultrasound and cellulase treatment proved to be an efficient approach for modifying IDF from RRTP, with the potential for developing a functional food ingredient.


Subject(s)
Dietary Fiber , Rosa , Dietary Fiber/analysis , Rosa/chemistry , Solubility , Cellulase/metabolism , Cellulase/chemistry , Adsorption
3.
Foods ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731660

ABSTRACT

Oil bodies (OBs) are naturally occurring pre-emulsified oil droplets that have broad application prospects in emulsions and gels. The main purpose of this research was to examine the impact of the OB content on the structure and functional aspects of acid-mediated soy protein isolate (SPI) gel filled with OBs. The results indicated that the peanut oil body (POBs) content significantly affected the water holding capacity of the gel. The rheological and textural analyses showed that POBs reduced the gel strength and hardness. The scanning electron and confocal laser scanning microscopy analyses revealed that POBs aggregated during gel formation and reduced the gel network density. The Fourier transform infrared spectrum (FTIR) analysis demonstrated that POBs participated in protein gels through hydrogen bonds, steric hindrance and hydrophobic interactions. Therefore, OBs served as inactive filler in the acid-mediated protein gel, replaced traditional oils and provided alternative ingredients for the development of new emulsion-filled gels.

4.
Article in English | MEDLINE | ID: mdl-38743291

ABSTRACT

Metal-organic frameworks (MOFs) as promising electrocatalysts have been widely studied, but their performance is limited by conductivity and coordinating saturation. This study proposes a cationic (V) modification strategy and evaluates its effect on the electrocatalytic performance of CoFe-MOF nanosheet arrays. The optimal V-CoFe-MOF/NF electrocatalyst exhibits excellent oxygen-evolution reaction (OER)/hydrogen-evolution reaction (HER) performance (231 mV at 100 mA cm-2/86 mV at 10 mA cm-2) in alkaline conditions, with its OER durability exceeding 400 h without evident degradation. Furthermore, as a bifunctional electrocatalyst for water splitting, a small cell voltage is achieved (1.60 V at 10 mA cm-2). The practicability of the catalyst is further evaluated by membrane electrode assembly (MEA), showing outstanding activity (1.53 V at 10 mA cm-2) and long-term stability (at 300 mA cm-2). Moreover, our results reveal the apparent reconstruction properties of V-CoFe-MOF/NF in alkaline electrolytes, where the partially dissolved V promotes the formation of more active ß-MOOH. The mechanism study shows the OER mechanism shifts to a lattice oxygen oxidation mechanism (LOM) after V doping, which directly avoids complex multistep adsorption mechanism and reduces reaction energy. This study provides a cation mediated strategy for designing efficient electrocatalysts.

5.
Nat Commun ; 15(1): 4035, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740742

ABSTRACT

Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.


Subject(s)
Hydrogels , Influenza A Virus, H1N1 Subtype , SARS-CoV-2 , Wireless Technology , Immunoassay/methods , Immunoassay/instrumentation , Humans , Hydrogels/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Wireless Technology/instrumentation , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Aerosols , COVID-19/diagnosis , COVID-19/virology , COVID-19/immunology , Antigens, Viral/immunology , Antigens, Viral/analysis , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/isolation & purification , Limit of Detection
6.
Toxicol Lett ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734218

ABSTRACT

Osimertinib, an irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) used for cancer treatment, can cause significant cardiac toxicity. However, the specific mechanism of osimertinib-induced cardiotoxicity is not fully understood. In this study, we administered osimertinib to mice and neonatal rat ventricular myocytes (NRVMs). We observed significant structural and functional damage to the hearts of these mice, along with a marked increase in cardiac injury biomarkers and accompanying ultrastructural damage to mitochondria. We integrated 4D label-free protein quantification and RNA-Seq methods to analyze the sequencing data of NRVMs under osimertinib treatment (0 and 2.5µM). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis evidenced that differentially expressed genes (DEGs)and differentially expressed proteins (DEPs) were distinctly enriched for oxidative phosphorylation (OXPHOs). Simultaneously, osimertinib primarily affected the contents of adenosine triphosphate (ATP). Further investigations revealed that osimertinib disrupts the functions of the ATP synthase (complex V), leading to a reduction in ATP production. Taken together, our data demonstrated that osimertinib causes mitochondrial dysfunction, which in turn leads to the onset of cardiac toxicity.

7.
Fish Shellfish Immunol ; : 109648, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777253

ABSTRACT

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.

8.
Br J Ophthalmol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777388

ABSTRACT

AIMS: To investigate the effect of preretinal tractional structures (PTS) and posterior scleral structures (PSS) on myopic traction maculopathy (MTM) progression. METHODS: This retrospective cohort study included 185 fellow highly myopic eyes of 185 participants who underwent surgery for MTM. PTS included epiretinal membrane, incomplete posterior vitreous detachment and their combination. PSS included posterior staphyloma and dome-shaped macula (DSM). The MTM stage was graded according to the Myopic Traction Maculopathy Staging System. Optical coherence tomography was used to identify MTM progression, defined as an upgrade of MTM. The Kaplan-Meier method with log-rank test was used to assess MTM progression over the 3-year follow-up period. Risk factors for progression were identified using Cox regression analysis. RESULTS: MTM progression was observed in 48 (25.9%) eyes. Three-year progression-free survival (PFS) rates for eyes with PTS, staphyloma and DSM were 53.7%, 58.2% and 90.7%, respectively. Eyes with PTS and staphyloma exhibited lower 3-year PFS rates than those without PTS or staphyloma (P log-rank test =0.002 and <0.001), while eyes with DSM had a higher 3-year PFS rate than eyes without DSM (P log-rank test=0.01). Multivariate Cox regression analysis showed that PTS (HR, 3.23; p<0.001) and staphyloma (HR, 7.91; p<0.001) were associated with MTM progression, whereas DSM (HR, 0.23; p=0.046) was a protective factor. CONCLUSION: Both PTS and PSS play a critical role in the progression of MTM. Addressing these factors can aid in the management of MTM.

9.
Int J Biol Macromol ; 269(Pt 2): 132215, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729482

ABSTRACT

Food allergy has a significant impact on the health and well-being of individuals, affecting both their physical and mental states. Research on natural bioactive compounds, such as polysaccharides extracted from seaweeds, holds great promise in the treatment of food allergies. In this study, fermented Gracilaria lemaneiformis polysaccharides (F-GLSP) were prepared using probiotic fermentation. Probiotic fermentation of Gracilaria lemaneiformis reduces the particle size of polysaccharides. To compare the anti-allergic activity of F-GLSP with unfermented Gracilaria lemaneiformis polysaccharides (UF-GLSP), an OVA-induced mouse food allergy model was established. F-GLSP exhibited a significant reduction in OVA-specific IgE and mMCP levels in allergic mice. Moreover, it significantly inhibited Th2 differentiation and IL-4 production and significantly promoted Treg differentiation and IL-10 production in allergic mice. In contrast, UF-GLSP only reduced OVA-specific IgE and mMCP in the serum of allergic mice. Furthermore, F-GLSP demonstrated a more pronounced regulation of intestinal flora abundance compared to UF-GLSP, significantly influencing the populations of Firmicutes, Bacteroidetes, Lactobacillus, and Clostridiales in the intestines of mice with food allergy. These findings suggest that F-GLSP may regulate food allergies in mice through multiple pathways. In summary, this study has promoted further development of functional foods with anti-allergic properties based on red algae polysaccharides.

10.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691934

ABSTRACT

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Subject(s)
Biodegradation, Environmental , Glycolipids , Mixed Function Oxygenases , Petroleum , Surface-Active Agents , Petroleum/metabolism , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Glycolipids/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Alkanes/metabolism
11.
Gels ; 10(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786264

ABSTRACT

Emulsified meat products contain high animal fat content, and excessive intake of animal fat is not good for health, so people are paying more and more attention to reduced-fat meat products. This study investigated the impact of varying proportions of pork back-fat and/or resistant starch on the proximate composition, water and fat retention, texture properties, color, and rheology characteristic of pork batter. The results found that replacing pork back-fat with resistant starch and ice water significantly decreased the total lipid and energy contents of cooked pork batter (p < 0.05) while improving emulsion stability, cooking yield, texture, and rheology properties. Additionally, when the pork back-fat replacement ratio was no more than 50%, there was a significant increase in emulsion stability, cooking yield, hardiness, springiness, cohesiveness, chewiness, and L* and G' values (p < 0.05). Furthermore, resistant starch and ice water enhanced myosin head and tail thermal stability and increased G' value at 80 °C. However, the initial relaxation times significantly decreased (p < 0.05) and the peak ratio of P21 significantly increased from 84.62% to 94.03%, suggesting reduced fluidity of water. In conclusion, it is feasible to use resistant starch and ice water as a substitute for pork back-fat in order to produce reduced-fat pork batter with favorable gel and rheology properties.

12.
J Hazard Mater ; 472: 134420, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38691997

ABSTRACT

In this work, MIL-88A(Fe) was immobilized onto the expanded perlites to fabricate the floating MIL-88A(Fe)@expanded perlites (M@EP) catalyst via high throughput batch synthesis method under room temperature. The as-prepared M@EP could efficiently activate H2O2 to achieve 100% tetracycline antibiotics (TCs) removal under both artificial low power UV light (UVL) and real sunlight (SL) irradiation. The toxicological evaluation, growth experiment of mung beans and antimicrobial estimation revealed the decreasing aquatic toxicity of the TCs intermediates compared to those of the pristine TCs. A self-designed continuous bed reactor was employed to investigate the long-term operation of the M@EP. The findings demonstrated that the antibiotics mixture can be continuously degraded up to 7 days under UVL and 5 daytimes under SL irradiation, respectively. More importantly, ca. 76.9% and 81.6% of total organic carbon (TOC) removal efficiencies were accomplished in continuous bed reactor under UVL and SL irradiation, respectively. This work advances the immobilized MOFs on floating supports for their practical application in large-scale wastewater purification through advanced oxidation processes. ENVIRONMENTAL IMPLICATION: This work presented the high throughput production and photo-Fenton degradation application of floating MIL-88A(Fe)@expanded perlites (M@EP). Three tetracycline antibiotics (TCs) were selected as model pollutants to test the degradation ability of M@EP in batch experiment and continuous operation under artificial light and solar light. The complete TCs degradation could be accomplished in self-designed device up to 7 d under UV light and 5 d under real solar light. This work tapped a new door to push MOFs-based functional materials in the real water purification.

13.
Int J Biol Macromol ; 268(Pt 1): 131820, 2024 May.
Article in English | MEDLINE | ID: mdl-38670184

ABSTRACT

In this study, an NSDD gene, which encoded a GATA-type transcription factor involved in the regulation and biosynthesis of melanin, pullulan, and polymalate (PMA) in Aureobasidium melanogenum, was characterized. After the NSDD gene was completely removed, melanin production by the Δnsd mutants was enhanced, while pullulan and polymalate production was significantly reduced. Transcription levels of the genes involved in melanin biosynthesis were up-regulated while expression levels of the genes responsible for pullulan and PMA biosynthesis were down-regulated in the Δnsdd mutants. In contrast, the complementation of the NSDD gene in the Δnsdd mutants made the overexpressing mutants restore melanin production and transcription levels of the genes responsible for melanin biosynthesis. Inversely, the complementation strains, compared to the wild type strains, showed enhanced pullulan and PMA yields. These results demonstrated that the NsdD was not only a negative regulator for melanin biosynthesis, but also a key positive regulator for pullulan and PMA biosynthesis in A. melanogenum. It was proposed how the same transcriptional factor could play a negative role in melanin biosynthesis and a positive role in pullulan and PMA biosynthesis. This study provided novel insights into the regulatory mechanisms of multiple A. melanogenum metabolites and the possibility for improving its yields of some industrial products through genetic approaches.


Subject(s)
Aureobasidium , Gene Expression Regulation, Fungal , Glucans , Melanins , Glucans/biosynthesis , Glucans/metabolism , Melanins/biosynthesis , Aureobasidium/metabolism , Aureobasidium/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , GATA Transcription Factors/metabolism , GATA Transcription Factors/genetics , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism
14.
J Med Chem ; 67(9): 7504-7515, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38640354

ABSTRACT

Food allergy (FA) poses a growing global food safety concern, yet no effective cure exists in clinics. Previously, we discovered a potent antifood allergy compound, butyrolactone I (BTL-I, 1), from the deep sea. Unfortunately, it has a very low exposure and poor pharmacokinetic (PK) profile in rats. Therefore, a series of structural optimizations toward the metabolic pathways of BTL-I were conducted to provide 18 derives (2-19). Among them, BTL-MK (19) showed superior antiallergic activity and favorable pharmacokinetics compared to BTL-I, being twice as potent with a clearance (CL) rate of only 0.5% that of BTL-I. By oral administration, Cmax and area under the concentration-time curve (AUC0-∞) were 565 and 204 times higher than those of BTL-I, respectively. These findings suggest that butyrolactone methyl ketone (BTL-BK) could serve as a drug candidate for the treatment of FAs and offer valuable insights into optimizing the druggability of lead compounds.


Subject(s)
4-Butyrolactone , Anti-Allergic Agents , Animals , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacokinetics , 4-Butyrolactone/administration & dosage , Administration, Oral , Rats , Humans , Anti-Allergic Agents/pharmacokinetics , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/administration & dosage , Structure-Activity Relationship , Male , Rats, Sprague-Dawley , Biological Availability , Food Hypersensitivity/drug therapy , Mice
15.
Phytochem Anal ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639052

ABSTRACT

INTRODUCTION: Smilacis Glabrae Rhizoma (SGR) is rich in chemical constituents with a variety of pharmacological activities. However, in-depth research has yet to be conducted on the chemical and pharmacodynamic constituents of SGR. MATERIALS AND METHODS: In this study, the chemical constituents of SGR were analyzed using liquid chromatography-mass spectrometry, and the pharmacodynamic compounds responsible for the medicinal effects of SGR were elucidated through a literature review. RESULTS: In total, 20 potentially new compounds, including 16 flavonoids (C19, C20, and C27-C40) and four phenylpropanoids (C107, C112, C113, and C118), together with 161 known ones were identified in the ethanol extract of SGR using liquid chromatography-mass spectrometry, and 25 of them were unequivocally identified by comparison with reference compounds. Moreover, 17 known constituents of them were identified in the plants of genus Smilax for the first time, and 16 were identified in the plant Smilax glabra Roxb. for the first time. Of 161 known compounds, 84 constituents (including isomers) have been reported to have 17 types of pharmacological activities, covering all known pharmacological activities of SGR; among these 84 bioactive constituents, six were found in the plants of genus Smilax for the first time and five were found in S. glabra for the first time, which are new bioactive constituents found in the plants of genus Smilax and the plant S. glabra, respectively. CONCLUSION: The results provide further information on the chemical composition of SGR, laying the foundation for the elucidation of the pharmacodynamic substances of SGR.

16.
Nat Aging ; 4(4): 464-482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622408

ABSTRACT

Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.


Subject(s)
Diabetes Mellitus, Type 2 , Neoplasms , Vaccines , Humans , Vaccines/therapeutic use , Aging , Vaccination
17.
Protein Cell ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577810

ABSTRACT

Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis, a worldwide prevalent inflammatory disease. However, a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking. Here, we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging, by which a panel of cell type-specific signatures were elucidated. Epithelial cells were identified as the most affected cell types by aging in the gingiva. Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis, which declined during aging in epithelial cells, especially in basal cells. The decline of YAP activity during aging was confirmed in the human gingival tissues, and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects. Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases, with the ultimate goal of advancing periodontal health and promoting healthy aging.

18.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598840

ABSTRACT

Sarcoplasmic calcium-binding protein (Cra a 4) from Crassostrea angulata belongs to the EF-hand superfamily, and understanding of its structure-allergenicity relationship is still insufficient. In this study, chemical denaturants were used to destroy the structure of Cra a 4, showing that disruption of the structure reduced its IgG-/IgE-binding activity. To explore which critical amino acid site affects the allergenicity of Cra a 4, the mutants were obtained by site-directed mutations in the disulfide bonds site (C97), conformational epitopes (I105, D114), or Ca2+-binding region (D106, D110) and their IgG-/IgE-binding activity was reduced significantly using serological tests. Notably, C97A had the lowest immunoreactivity. In addition, two conformational epitopes of Cra 4 were verified. Meanwhile, the increase of the α-helical content, surface hydrophobicity, and surface electrostatic potential of C97A affected its allergenicity. Overall, the understanding of the structure-allergenicity relationship of Cra a 4 allowed the development of a hypoallergenic mutant.

19.
World J Clin Cases ; 12(11): 1960-1966, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38660543

ABSTRACT

BACKGROUND: Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system, causing encephalitis. Few cases of anti-N-methyl-D-aspartate receptor autoimmune encephalitis (AE) secondary to neurosyphilis have been reported. We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor (GABABR) AE. CASE SUMMARY: A young man in his 30s who presented with acute epileptic status was admitted to a local hospital. He was diagnosed with neurosyphilis, according to serum and cerebrospinal fluid (CSF) tests for syphilis. After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin, epilepsy was controlled but serious cognitive impairment, behavioral, and serious psychiatric symptoms were observed. He was then transferred to our hospital. The Mini-Mental State Examination (MMSE) crude test results showed only 2 points. Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluid-attenuated inversion recovery high signals in the white matter surrounding both lateral ventricles, left amygdala and bilateral thalami. Anti-GABABR antibodies were discovered in CSF (1:3.2) and serum (1:100). The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE, and received methylprednisolone and penicillin. Following treatment, his mental symptoms were alleviated. Cognitive impairment was significantly improved, with a MMSE of 8 points. Serum anti-GABABR antibody titer decreased to 1:32. The patient received methylprednisolone and penicillin after discharge. Three months later, the patient's condition was stable, but the serum anti-GABABR antibody titer was 1:100. CONCLUSION: This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy.

20.
Sci Total Environ ; 926: 172125, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38565353

ABSTRACT

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Subject(s)
Marine Toxins , Mytilus , Animals , Marine Toxins/toxicity , Microplastics/metabolism , Plastics/metabolism , Mytilus/metabolism , Shellfish
SELECTION OF CITATIONS
SEARCH DETAIL
...