Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 30(9): 2941-2948, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31529868

ABSTRACT

To explore the photosynthetic adaptation of Phoebe bournei to different light conditions, two-year-old P. bournei seedlings were grown under three light regimes (full light, shading rate 50% and 78% of full light). The chlorophyll contents, leaf gas exchange and chlorophyll fluorescence of P. bournei were measured after six-month treatment. The results showed that the contents of chlorophyll a, chlorophyll b, chlorophyll (a+b) and carotenoids in leaves were in a descending order of shading rate 78% > shading rate 50% > full light. There was no significant difference of chlorophyll a/b between natural and shade treatments. The shading treatment reduced light compensation point (LCP), but increased light saturation point (LSP) and apparent quantum yield (AQY), suggesting that plants could utilize both the weak light and the high light. Maximum net photosynthetic rate (Pn max), dark respiration rate (Rd), and maximum electron transfer rate (Jmax) increased under the shading treatment. There was significant difference between natural and shade treatment in net photosynthetic rate (Pn), stomatal conductance to CO2(gsc), intercellular CO2 concentration (Ci), and mesophyll conductance (gm). Pn and gm of different light regimes were sorted from the highest to the lowest as shading rate 78% > shading rate 50% > full light. gsc under shading rate 78% was higher than that under full light. Ci under shading rate 50% and 78% were lower than that under full light. Actual photochemical efficiency of PS2 (Fv'/Fm'), quantum yields of PS2 (ΦPS2), and electron transport rate (J) of P. bournei leaves were significantly higher under shading rate 78% than those under shading rate 50% and full light. In conclusion, P. bournei could increase Pn by increasing chlorophyll content, AQY, J, gsc, and gm under shade condition.


Subject(s)
Chlorophyll/metabolism , Lauraceae/physiology , Plant Leaves/metabolism , Chlorophyll/analysis , Chlorophyll A , Photosynthesis/physiology , Plant Leaves/chemistry , Seedlings , Sunlight
2.
Article in English | MEDLINE | ID: mdl-21096169

ABSTRACT

Technology advantages of body sensor networks (BSN) have shown great deal of promises in medical applications. In this paper we introduced a wearable device for biofeedback application based on the BSN platform we had developed. The biofeedback device we have developed includes the heart rate monitoring belt with conductive fabric and the biofeedback device with respiration belt. A wearable respiratory biofeedback system was preliminarily explored based on the BSN platform. In-situ experiments showed that the BSN platform and the biofeedback device worked as intended.


Subject(s)
Biofeedback, Psychology , Heart Rate , Monitoring, Physiologic/instrumentation , Respiration , Adult , Computer Communication Networks , Computers , Electrocardiography/methods , Equipment Design/instrumentation , Humans , Reproducibility of Results , Signal Processing, Computer-Assisted/instrumentation , Sleep , Textiles , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...