Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
ACS Nano ; 18(21): 13662-13674, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752487

ABSTRACT

Porous copper (Cu) current collectors show promise in stabilizing Li metal anodes (LMAs). However, insufficient lithiophilicity of pure Cu and limited porosity in three-dimensional (3D) porous Cu structures led to an inefficient Li-Cu composite preparation and poor electrochemical performance of Li-Cu composite anodes. Herein, we propose a porous Cu-CuZn (DG-CCZ) host for Li composite anodes to tackle these issues. This architecture features a pore size distribution and lithiophilic-lithiophobic characteristics designed in a gradient distribution from the inside to the outside of the anode structure. This dual-gradient porous Cu-CuZn exhibits exceptional capillary wettability to molten Li and provides a high porosity of up to 66.05%. This design promotes preferential Li deposition in the interior of the porous structure during battery operation, effectively inhibiting Li dendrite formation. Consequently, all cell systems achieve significantly improved cycling stability, including Li half-cells, Li-Li symmetric cells, and Li-LFP full cells. When paired synergistically with the double-coated LiFePO4 cathode, the pouch cell configured with multiple electrodes demonstrates an impressive discharge capacity of 159.3 mAh g-1 at 1C. We believe this study can inspire the design of future 3D Li anodes with enhanced Li utilization efficiency and facilitate the development of future high-energy Li metal batteries.

2.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Article in English | MEDLINE | ID: mdl-38580030

ABSTRACT

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Nanoparticles , Needles , Polylysine , Polylysine/chemistry , Doxycycline/administration & dosage , Doxycycline/pharmacology , Doxycycline/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Animals , Pseudomonas aeruginosa/drug effects , Mice , Drug Delivery Systems , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Pseudomonas Infections/drug therapy
3.
Environ Sci Technol ; 58(15): 6716-6724, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38573586

ABSTRACT

Wildfires in Australia have attracted extensive attention in recent years, especially for the devastating 2019-2020 fire season. Remote forcing, such as those from tropical oceans, plays an important role in driving the abnormal weather conditions associated with wildfires. However, whether high latitude climate change can impact Australian fires is largely unclear. In this study, we reveal a robust relationship between Antarctic sea ice concentration (SIC), primarily over the Amundsen Sea region, with Australian springtime fire activity, by using reanalysis data sets, AMIP simulation results, and a state-of-the-art climate model simulation. Specifically, a diminished Amundsen SIC leads to the formation of a high-pressure system above Australia as a result of the eastward propagation of Rossby waves. Meanwhile, two strengthened meridional cells originating from the tropic and polar regions also enhance subsiding airflow in Australia, resulting in prolonged arid and high-temperature conditions. This mechanism explains about 28% of the variability of Australian fire weather and contributed more than 40% to the 2019 extreme burning event, especially in the eastern hotspots. These findings contribute to our understanding of polar-low latitude climate teleconnection and have important implications for projecting Australian fires as well as the global environment.


Subject(s)
Fires , Wildfires , Australia , Ice Cover , Oceans and Seas
4.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667188

ABSTRACT

SPR biosensors have been extensively used for investigating protein-protein interactions. However, in conventional surface plasmon resonance (SPR) biosensors, detection is limited by the Brownian-motion-governed diffusion process of sample molecules in the sensor chip, which makes it challenging to detect biomolecule interactions at ultra-low concentrations. Here, we propose a highly sensitive SPR imaging biosensor which exploits the coffee ring effect (CRE) for in situ enrichment of molecules on the sensing surface. In addition, we designed a wavelength modulation system utilizing two LEDs to reduce the system cost and enhance the detection speed. Furthermore, a detection limit of 213 fM is achieved, which amounts to an approximately 365 times improvement compared to traditional SPR biosensors. With further development, we believe that this SPR imaging system with high sensitivity, less sample consumption, and faster detection speed can be readily applied to ultra-low-concentration molecular detection and interaction analysis.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Limit of Detection
5.
Environ Sci Technol ; 58(8): 4008-4018, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38347702

ABSTRACT

The electrocatalytic hydrodehalogenation (EHDH) process mediated by atomic hydrogen (H*) is recognized as an efficient method for degrading halogenated organic pollutants (HOPs). However, a significant challenge is the excessive energy consumption resulting from the recombination of H* to H2 production in the EHDH process. In this study, a promising strategy was proposed to generate piezo-induced atomic H*, without external energy input or chemical consumption, for the degradation and dehalogenation of HOPs. Specifically, sub-5 nm Ni nanoparticles were subtly dotted on an N-doped carbon layer coating on BaTiO3 cube, and the resulted hybrid nanocomposite (Ni-NC@BTO) can effectively break C-X (X = Cl and F) bonds under ultrasonic vibration or mechanical stirring, demonstrating high piezoelectric driven dehalogenation efficiencies toward various HOPs. Mechanistic studies revealed that the dotted Ni nanoparticles can efficiently capture H* to form Ni-H* (Habs) and drive the dehalogenation process to lower the toxicity of intermediates. COMSOL simulations confirmed a "chimney effect" on the interface of Ni nanoparticle, which facilitated the accumulation of H+ and enhanced electron transfer for H* formation by improving the surface charge of the piezocatalyst and strengthening the interfacial electric field. Our work introduces an environmentally friendly dehalogenation method for HOPs using the piezoelectric process independent of the external energy input and chemical consumption.


Subject(s)
Environmental Pollutants , Hydrogen/metabolism , Halogens/chemistry
6.
Br J Haematol ; 204(4): 1207-1218, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37967471

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has a significant impact on the immune system. This is the first and largest study on pre-existing immune thrombocytopenia (ITP) patients infected with COVID-19 in China. We prospectively collected ITP patients infected with COVID-19 enrolled in the National Longitudinal Cohort of Hematological Diseases (NICHE, NCT04645199) and followed up for at least 1 month after infection. One thousand and one hundred forty-eight pre-existing ITP patients were included. Two hundred and twelve (18.5%) patients showed a decrease in the platelet (PLT) count after infection. Forty-seven (4.1%) patients were diagnosed with pneumonia. Risk factors for a decrease in the PLT count included baseline PLT count <50 × 109/L (OR, 1.76; 95% CI, 1.25-2.46; p = 0.001), maintenance therapy including thrombopoietin receptor agonists (TPO-RAs) (OR, 2.27; 95% CI, 1.60-3.21; p < 0.001) and previous splenectomy (OR, 1.98; 95% CI, 1.09-3.61; p = 0.03). Risk factors for pneumonia included age ≥40 years (OR, 2.45; 95% CI, 1.12-5.33; p = 0.02), ≥2 comorbidities (OR, 3.47; 95% CI, 1.63-7.64; p = 0.001), maintenance therapy including TPO-RAs (OR, 2.14; 95% CI, 1.17-3.91; p = 0.01) and immunosuppressants (OR, 3.05; 95% CI, 1.17-7.91; p = 0.02). In this cohort study, we described the characteristics of pre-existing ITP patients infected with COVID-19 and identified several factors associated with poor outcomes.


Subject(s)
COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Adult , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Purpura, Thrombocytopenic, Idiopathic/therapy , Cohort Studies , Prospective Studies , Thrombocytopenia/epidemiology , Thrombocytopenia/etiology , Thrombopoietin , Recombinant Fusion Proteins , Receptors, Fc , Hydrazines
7.
Phys Chem Chem Phys ; 25(48): 32966-32971, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38019162

ABSTRACT

Organic-inorganic halide perovskites (OIHPs) have emerged as one of the most efficient photovoltaic materials due to their superior properties. However, improving their stability remains a key challenge. Herein, we investigate the thermal decomposition properties of OIHP FAxMA1-xPbI3 with mixed cations of formamidinium (FA) and methylammonium (MA). Using thermogravimetric analysis together with Fourier transform infrared spectroscopy, we identify and monitor the gaseous decomposition products as a function of temperature and cation composition. Thermal decomposition products of both MA and FA cations were observed at all stages of the thermal decomposition process, contrary to previous expectations. The yield, release sequence and kinetics of the organic gaseous products were found to depend strongly on the ratio between FA and MA cations. Furthermore, cesium ion doping was investigated as a potential strategy to improve the thermal stability of mixed cation perovskites. These results provide new insights into the effect of cation mixing on perovskite stability, suggesting that optimizing the cation ratios and decomposition pathways can guide approaches to boost the stability and performance of mixed cation perovskites.

8.
Biosensors (Basel) ; 13(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37887139

ABSTRACT

Intensity interrogation-based surface plasmon resonance imaging (ISPRi) sensing has a simple schematic design and is the most widely used surface plasmon resonance technology at present. In this study, we report the successful development of a novel high-sensitivity ISPRi biosensor and its application for apoptosis detection in cancer cells. By optimizing the excitation wavelength and excitation angle, we achieved a refractive index resolution (RIR) of 5.20 × 10-6 RIU. Importantly, the biosensor has been tested and validated for high-throughput and label-free detection of activated caspase-3 with its specific inhibitor Z-DEVD-FMK in apoptotic cells. Therefore, this study describes a novel molecular imaging system to monitor apoptosis in cancers for disease diagnosis and/or evaluation of therapeutic efficacy of anti-cancer drugs.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Neoplasms/diagnosis , Refractometry , Apoptosis
9.
Sci Bull (Beijing) ; 68(21): 2629-2638, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37739837

ABSTRACT

The climate effects of atmospheric aerosols remain highly uncertain. Part of the uncertainty arises from the fact that scattering and absorbing aerosols have distinct or even opposite effects. Thus their relative fraction is critical in determining the overall aerosol climate effect. This study combines observations and global model simulations to demonstrate that changes in the fraction of scattering and absorbing aerosols play an important role in driving the monsoon precipitation decrease over northern India since the 1980s, especially over the Gangetic Basin. Increased aerosol scattering, or decreased aerosol absorption, manifested as a significant increase of aerosol single scattering albedo (SSA), causes strong cooling in the upper atmosphere. This suppresses vertical convection and thus reduces precipitation. Further analysis of the Couple Model Intercomparison Project Phase 6 multi-model-mean historical simulation shows that failing to capture the SSA increase over northern India is likely an important cause of the simulated precipitation trend bias in this area.

10.
Nanoscale ; 15(31): 12868-12879, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37492026

ABSTRACT

A growing number of nanomaterials are being broadly used in food-related fields as well as therapeutics. Oral exposure to these widespread nanomaterials is inevitable, with the intestine being a major target organ. Upon encountering the intestine, these nanoparticles can cross the intestinal barrier, either bypassing cells or via endocytosis pathways to enter the adjacent mesentery. The intricate structure of the mesentery and its entanglement with the abdominal digestive organs determine the final fate of nanomaterials in the human body. Importantly, mesentery-governed dynamic processes determine the distribution and subsequent biological effects of nanomaterials that cross the intestine, thus there is a need to understand how nanomaterials interact with the mesentery. This review presents the recent progress in understanding the mesenteric structure and function and highlights the importance of the mesentery in health and disease, with a focus on providing new insights and research directions around the biological effects of nanomaterials on the mesentery. A thorough comprehension of the interactions between nanomaterials and the mesentery will facilitate the design of safer nanomaterial-containing products and the development of more effective nanomedicines to combat intestinal disorders.


Subject(s)
Nanoparticles , Nanostructures , Humans , Mesentery/metabolism , Nanoparticles/chemistry
11.
Small ; 19(41): e2301379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37300346

ABSTRACT

The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.

12.
Sci Bull (Beijing) ; 68(13): 1439-1446, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37296039

ABSTRACT

The Middle East, as the world's second-largest dust source region, has dust emissions that significantly impact numerous populated areas, extending from North America to South Asia. Over the past two decades, dust activity in the Middle East has exhibited pronounced variability, with a notable trend shift from positive to negative around 2010. The underlying cause of this trend shift remains elusive. In this study, we employ multi-source datasets and global climate model simulations to demonstrate that the variability of Middle East dust activities is closely tied to changes in North Tropical Atlantic (NTA) sea surface temperature (SST). Specifically, a warm NTA SST anomaly generates an anomalous regional zonal cell characterized by ascending air motion above the NTA and descending air surrounding the Middle East. The associated surface high pressures around the Middle East subsequently induce hot and dry conditions accompanied by intensified Shamal winds in the north, which are favorable for dust emission and transport. The shift in SST trends from positive to negative in the NTA around 2010 is therefore responsible for the observed dust trend shift in the Middle East. This mechanism holds vital implications for predicting decadal dust variability over the Middle East region and further the project of global environment.

13.
Diagnosis (Berl) ; 10(3): 257-266, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37185165

ABSTRACT

OBJECTIVES: Patients with mental illness are less likely to receive the same physical healthcare as those without mental illness and are less likely to be treated in accordance with established guidelines. This study employed a randomized experiment to investigate the influence of comorbid depression on diagnostic accuracy. METHODS: Physicians were presented with an interactive vignette describing a patient with a complex presentation of pernicious anemia. They were randomized to diagnose either a patient with or without (control) comorbid depression and related behaviors. All other clinical information was identical. Physicians recorded a differential diagnosis, ordered tests, and rated patient likeability. RESULTS: Fifty-nine physicians completed the study. The patient with comorbid depression was less likeable than the control patient (p=0.03, 95 % CI [0.09, 1.53]). Diagnostic accuracy was lower in the depression compared to control condition (59.4 % vs. 40.7 %), however this difference was not statistically significant χ2(1)=2.035, p=0.15. Exploratory analyses revealed that patient condition (depression vs. control) interacted with the number of diagnostic tests ordered to predict diagnostic accuracy (OR=2.401, p=0.038). Accuracy was lower in the depression condition (vs. control) when physicians ordered fewer tests (1 SD below mean; OR=0.103, p=0.028), but there was no difference for physicians who ordered more tests (1 SD above mean; OR=2.042, p=0.396). CONCLUSIONS: Comorbid depression and related behaviors lowered diagnostic accuracy when physicians ordered fewer tests - a time when more possibilities should have been considered. These findings underscore the critical need to develop interventions to reduce diagnostic error when treating vulnerable populations such as those with depression.


Subject(s)
Depression , Humans , Depression/diagnosis , Depression/epidemiology , Comorbidity , Diagnosis, Differential
14.
Chem Sci ; 14(19): 5177-5181, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37206397

ABSTRACT

Organic-doped polymers and room-temperature phosphorescence (RTP) mechanisms have been widely reported. However, RTP lifetimes >3 s are rare and RTP-enhancing strategies are incompletely understood. Herein, we demonstrate a rational molecular doping strategy to obtain ultralong-lived, yet bright RTP polymers. The n-π* transitions of boron- and nitrogen-containing heterocyclic compounds can promote a triplet-state population, and the grafting of boronic acid onto polyvinyl alcohol can inhibit molecular thermal deactivation. However, excellent RTP properties were achieved by grafting 1-0.1% (N-phenylcarbazol-2-yl)-boronic acid rather than (2-/3-/4-(carbazol-9-yl)phenyl)boronic acids to afford record-breaking ultralong RTP lifetimes up to 3.517-4.444 s. These results showed that regulation of the interacting position between the dopant and matrix molecules to directly confine the triplet chromophore could more effectively stabilize triplet excitons, disclosing a rational molecular-doping strategy for achieving polymers with ultralong RTP. Based on the energy-donor function of blue RTP, an ultralong red fluorescent afterglow was demonstrated by co-doping with an organic dye.

15.
Small ; 19(32): e2301027, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37060218

ABSTRACT

The density and spatial distribution of substituted dopants affect the transition metal dichalcogenides (TMDCs) materials properties. Previous studies have demonstrated that the density of dopants in TMDCs increases with the amount of doping, and the phenomenon of doping concentration difference between the nucleation center and the edge is observed, but the spatial distribution law of doping atoms has not been carefully studied. Here, it is demonstrated that the spatial distribution of dopants changes at high doping concentrations. The spontaneous formation of an interface with a steep doping concentration change is named concentration phase separation (CPS). The difference in the spatial distribution of dopants on both sides of the interface can be identified by an optical microscope. This is consistent with the results of spectral analysis and microstructure characterization of scanning transmission electron microscope. According to the calculation results of density functional theory, the chemical potential has two relatively stable energies as the doping concentration increases, which leads to the spontaneous formation of CPS. Understanding the abnormal phenomena is important for the design of TMDCs devices. This work has great significance in the establishment and improvement of the doping theory and the design of the doping process for 2D materials.

16.
Environ Pollut ; 327: 121580, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37023887

ABSTRACT

Self-cleaning surface has attracted much attention in the field of photocatalytic degradation of NO due to its dirt pickup resistance and self-cleaning effect under the action of rainwater. In this review, the factors affecting NO degradation efficiency were analyzed in terms of photocatalyst characteristics and environmental conditions combined with the photocatalytic degradation mechanism. The feasibility of photocatalytic degradation of NO on superhydrophilic, superhydrophobic and superamphiphobic surfaces was discussed. Furthermore, the effect of special surface characteristics of self-cleaning on photocatalytic NO was highlighted and the improvement of the long-term effect using three self-cleaning surfaces on photocatalytic NO was evaluated and summarized. Finally, the conclusion and outlook were proposed related to the self-cleaning surface for photocatalytic degradation of NO. In future research, the comprehensive effects of the characteristics of photocatalytic materials, self-cleaning characteristics and environmental factors on the photocatalytic degradation of NO and the actual application effects of such self-cleaning photocatalytic surfaces should be further clarified in combination with the engineering. It is believed that this review can provide some theoretical basis and support for the development of self-cleaning surfaces in the field of photocatalytic degradation of NO.


Subject(s)
Surface Properties , Hydrophobic and Hydrophilic Interactions
17.
Chemosphere ; 324: 138277, 2023 May.
Article in English | MEDLINE | ID: mdl-36889473

ABSTRACT

As a promising cleaner technology for nitric oxide degradation, photocatalysis has attracted extensive attention, while the main limitations of photocatalytic nitric oxide are that the toxic NO2 is produced easily and the photocatalytic durability was inferior due to the accumulation of photocatalytic products. In this paper, a WO3-TiO2 nanorod/CaCO3 (TCC) insulating heterojunction photocatalyst with degradation-regeneration double sites was prepared by simple grinding and calcining. The effects of CaCO3 loading on the morphology, microstructure and composition of TCC photocatalyst were investigated by SEM, TEM, XRD, FT-IR and XPS etc. Also, TCC exhibits NO2-inhibited and durable characteristics for NO degradation. DFT calculation, the detection of active radicals by EPR, capture test and the NO degradation pathway characterized by in-situ FT-IR spectra showed that the electron-rich region formed and the existence of regeneration sites are the main reasons for promoting the NO2-inhibited and durable NO degradation. Furthermore, the mechanism of NO2-inhibited and durable NO degradation by TCC was revealed. Finally, TCC superamphiphobic photocatalytic coating was prepared, which still exhibits similar NO2-inhibited and durable characteristics for NO degradation to TCC photocatalyst. It may provide new application value and development prospects in the field of photocatalytic NO.


Subject(s)
Nanotubes , Nitric Oxide , Nitric Oxide/chemistry , Nitrogen Dioxide , Spectroscopy, Fourier Transform Infrared , Nanotubes/chemistry
18.
J Hazard Mater ; 452: 131237, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36948124

ABSTRACT

The wide band gap of TiO2 photocatalyst material limits its application in the field of visible photocatalysis. In this paper, oxygen vacancies and carbon quantum dots (CQD) with up-conversion character were proposed to improve the photocatalytic activity for NO removal of TiO2 under visible light irradiation. The one-dimensional TiO2 nanotube (TNs), TNs containing oxygen vacancies (OVTNs), TNs of composite CQD (CQD-TNs) and OVTNs of composite CQD (CQD-OVTNs) were prepared, respectively. Furthermore, the influence of oxygen vacancies and CQD on the removal of NOx by photocatalysis were explored. It is found that CQD-OVTNs exhibits the conspicuous synergetic effect of CQD and oxygen vacancy to boost visible photocatalytic NO removal, the NO removal efficiency was about 12, 2, and 2.6 times to TNs, OVTNs and CQD-TNs. Also, CQD-OVTNs exhibits the NO2-inhibited property during the process of photocatalytic NO removal. Finally, the synergetic mechanism of CQD and oxygen vacancies to TNs for boosting visible photocatalytic NO removal was revealed.

19.
Article in English | MEDLINE | ID: mdl-36767492

ABSTRACT

This study constructed an input-output and environmental indicator combination framework to evaluate the efficiency of energy infrastructure investment. Furthermore, the study used a three-stage DEA model to evaluate the efficiency of energy infrastructure investment projects in Jiangsu Province. Subsequently, the study constructed a system of indicators to measure regional economic development and assigns weights to them using the entropy value method, to obtain a comprehensive regional economic development score. Finally, this study analyzed the impact of energy investment efficiency on regional economic growth, economic stability, and industrial structure optimization. The study results show that the efficiency of energy infrastructure investment varies widely across Jiangsu and is highly correlated with the regional economic development model, the level of economic development, and the importance of the industry. The study also reveals that the improvement of energy infrastructure investment efficiency in Jiangsu fails to reflect the level of regional economic development; however, it has a crucial role in increasing social wealth and transforming the regional industrial structure and economy. Based on these results, this study further proposes countermeasures, such as planning a reasonable scale of investment, implementing differentiated regional investment, and upgrading management and technology.


Subject(s)
Investments , Technology , Economic Development , Efficiency , Models, Economic , China
20.
Front Oncol ; 13: 1001219, 2023.
Article in English | MEDLINE | ID: mdl-36845714

ABSTRACT

Background: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. Methods: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Results (SEER) database were selected as the training cohort. Univariate and multivariate logistic regression analyses were used to identify independent prognostic factors of osteosarcoma lung metastases. 108 osteosarcoma patients from a multicentre dataset was as valiation data. The predictive power of the nomogram model was assessed by receiver operating characteristic curves (ROC) and calibration plots, and decision curve analysis (DCA) was utilized to interpret the accurate validity in clinical practice. Results: A total of 1208 patients with osteosarcoma from both the SEER database(n=1100) and the multicentre database (n=108) were analyzed. Univariate and multivariate logistic regression analyses showed that Survival time, Sex, T-stage, N-stage, Surgery, Radiation, and Bone metastases were independent risk factors for lung metastasis. We combined these factors to construct a nomogram for estimating the risk of lung metastasis. Internal and external validation showed significant predictive differences (AUC 0.779, 0.792 respectively). Calibration plots showed good performance of the nomogram model. Conclusions: In this study, a nomogram model for predicting the risk of lung metastases in osteosarcoma patients was constructed and turned out to be accurate and reliable through internal and external validation. Moreover we built a webpage calculator (https://drliwenle.shinyapps.io/OSLM/) taken into account nomogram model to help clinicians make more accurate and personalized predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...