Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730832

ABSTRACT

Here, 0.3 wt.%Zr was introduced in an Al-4 wt.%Cu-0.5 wt.%Mn-0.1 wt.%Fe alloy to investigate its influence on the microstructure and mechanical properties of the alloy. The microstructures of both as-cast and T6-treated Al-Cu-Mn-Fe (ACMF) and Al-Cu-Mn-Fe-Zr (ACMFZ) alloys were analyzed. The intermetallic compounds formed through the casting procedure include Al2Cu and Al7Cu2Fe, and the Al2Cu phase dissolves into the matrix and re-precipitates as θ' phase during the T6 process. The introduction of Zr results in the precipitation of L12-Al3Zr nanometric precipitates after T6, while the θ' precipitates in ACMFZ alloy are much finer than those in ACMF alloy. The L12-Al3Zr precipitates were found coherently located with θ', which was assumed beneficial for stabilizing the θ' precipitates during the high-temperature tensile process. The tensile properties of ACMF and ACMFZ alloys at room temperature and elevated temperatures (200, 300, and 400 °C) were tested. Especially, the yield strength of ACMFZ alloys can reach 128 MPa and 65 MPa at 300 °C and 400 °C, respectively, which are 31% and 33% higher than those of ACMF alloys. The strengthening mechanisms of grain size, L12-Al3Zr, and θ' precipitates on the tensile properties were discussed. This work may be referred to for designing Al-Cu alloys for application in high-temperature fields.

2.
Fish Shellfish Immunol ; 136: 108697, 2023 May.
Article in English | MEDLINE | ID: mdl-36965609

ABSTRACT

Fusion gene is a new gene formed by the fusion of all or part of the sequences of two genes, it is caused by chromosome translocation, middle deletion or chromosome inversion. Numerous studies in the past have continuously shown that gene fusions are tightly associated with the occurrence and development of various diseases, especially cancer. Many fusion genes have been identified in humans. However, few fusion genes have been identified in fish. In this study, a novel NLRC3-NLRP12 fusion gene was identified in the Miichthys miiuy (miiuy croaker) by quantitative real-time PCR (qRT-PCR), PCR, and Sanger sequencing. This fusion gene is fused by two genes related to NLRs (nucleotide binding domain and oligomerization domain like receptors). We found that the expression of the NLRC3-NLRP12 fusion gene was significantly upregulated after infection with Vibrio anguillarum (V. anguillarum) or stimulation with lipopolysaccharide (LPS). In addition, the NLRC3-NLRP12 fusion gene was strongly induced by V. anguillarum infection, peaking within the kidney and liver at 12 h post infection. Further functional experiments showed that overexpression of NLRC3-NLRP12 significantly inhibited nuclear factor kappa-B (NF-κB) activation. This study suggests that the newly discovered NLRC3-NLRP12 fusion genes may play an important role in innate immunity in miiuy croaker.


Subject(s)
Perciformes , Vibrio Infections , Vibrio , Humans , Animals , Vibrio/physiology , Amino Acid Sequence , Sequence Alignment , Fish Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics
3.
J Biol Chem ; 298(4): 101773, 2022 04.
Article in English | MEDLINE | ID: mdl-35218771

ABSTRACT

Long noncoding RNAs (lncRNAs) are a diverse subset of RNA species of noncoding transcripts that are usually longer than 200 nt. However, the biological role and function of many lncRNAs have not been fully identified. It has been shown that one potential function of lncRNAs is to act as a precursor miRNA and promote the production of multiple miRNAs. However, the function of the miiuy croaker lncRNA MIR122HG has not been explored. In the present study, we show that this differentially expressed teleost fish lncRNA can act as the host gene of miR-122-5p, regulate its expression, and indirectly regulate the expression of potential inflammatory target protein transforming growth factor-ß-activated kinase 1. We show that MIR122HG can negatively regulate the transforming growth factor-ß-activated kinase 1-triggered NF-κB and interferon regulatory factor 3 signaling pathways and subsequently attenuate the innate immune response. In addition, MIR122HG can promote the replication of Siniperca chuatsi rhabdovirus and exacerbate the pathological effects caused by viral infection. We conclude that the study of lncRNA-miRNA-mRNA interaction through bioinformatics analysis or experimental-supported analysis can provide information for further elucidation of the functions of fish lncRNAs in innate immunity.


Subject(s)
Immunity, Innate , MicroRNAs , Perciformes , RNA, Long Noncoding , Animals , Immunity, Innate/genetics , MicroRNAs/genetics , MicroRNAs/immunology , NF-kappa B/immunology , Perciformes/genetics , Perciformes/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Signal Transduction/genetics , Signal Transduction/immunology
4.
Dev Comp Immunol ; 125: 104229, 2021 12.
Article in English | MEDLINE | ID: mdl-34389400

ABSTRACT

microRNAs (miRNAs), a crucial class of small non-coding RNA species, have been extensively studied as key molecular in immune regulation in the past decades. Here, we discover a new miRNA miR-148-1-5p and we elaborate that miR-148-1-5p functions as a negative regulator to participate in innate immune responses. In this article, it has been researched that the regulation effect of miR-148-1-5p to the nuclear factor kappaB (NF-κB) signaling pathway by targeting IRAK1 in miiuy croaker. First, through bioinformatics software to predict the potential targets of miR-148-1-5p, we found that IRAK1 had a base complementary region with indicated miRNA. Next, the dual-luciferase assays revealed that overexpression of miR-148-1-5p mimics and pre-miR-148 plasmid could significantly inhibit the luciferase activity of wild-type IRAK1-3'UTR. However, miR-148-1-5p inhibitors attenuated the inhibition caused by miR-148-1-5p. In addition, we also confirmed that miR-148-1-5p could suppress the expression of IRAK1 at mRNA level. Collectively, the regulations of miR-148-1-5p to NF-κB signaling pathways via targeting the IRAK1 gene was studied in miiuy croaker, which provided new information to enrich the immune regulation network of miRNA in teleost fish.


Subject(s)
Fish Proteins/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , Perciformes/immunology , 3' Untranslated Regions/genetics , Animals , Fish Proteins/genetics , Gene Regulatory Networks , Humans , Immunity, Innate , Interleukin-1 Receptor-Associated Kinases/genetics , MicroRNAs/genetics , Signal Transduction
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120213, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34325175

ABSTRACT

In this paper, we mainly study the interaction mechanism between food additives and antioxidant enzymes. Spectral methods were used to study the effect of sodium benzoate on the structure and function of lysozyme at the molecular level. Multi-spectroscopic results showed that sodium benzoate statically quenched the intrinsic fluorescence of lysozyme, formed complexes with lysozyme, increased the polarity of the aromatic amino acid, effected the molecular skeleton of lysozyme and stretched the secondary structure. The molecular docking and isothermal titration calorimetry (ITC) results showed that sodium benzoate entered the depression of the surface of lysozyme molecule both through hydrophobic interaction and hydrogen bond. Sodium benzoate was linked to tryptophan (Trp-63) by a hydrogen bond with a bond length of 2.48 Å. Thermodynamic studies showed that the combination was spontaneous, as the values of the enthalpy change (ΔH) and the entropy change (ΔS) were calculated to be 12.558 kJmol-1 and 25 kJmol-1k-1, respectively. Enzyme activity determination showed that Sodium benzoate increased lysozyme activity by 22.31%. This study can provide experimental support for evaluating the edible safety of sodium benzoate.


Subject(s)
Molecular Docking Simulation , Binding Sites , Calorimetry , Protein Binding , Spectrometry, Fluorescence , Spectrum Analysis , Thermodynamics
6.
Int J Biol Macromol ; 171: 225-233, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33418042

ABSTRACT

Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.


Subject(s)
Ascorbic Acid/pharmacology , Catalase/antagonists & inhibitors , Oligochaeta/drug effects , Pyrenes/toxicity , Soil Pollutants/toxicity , Amino Acids/chemistry , Animals , Antioxidants/pharmacology , Catalase/chemistry , Circular Dichroism , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Oligochaeta/enzymology , Oxidative Stress , Protein Conformation , Protein Structure, Secondary , Pyrenes/pharmacology , Reactive Oxygen Species/metabolism , Soil Pollutants/pharmacology , Spectrometry, Fluorescence , Static Electricity
7.
ACS Appl Mater Interfaces ; 13(4): 5266-5274, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33491442

ABSTRACT

Harvesting electromagnetic (EM) energy from the environment and converting it into useful micropower is a new and ideal way to eliminate EM radiation and while providing power for microelectronic devices. The key material of this technology is broadband, ultralight, and ultrathin EM-wave-absorbing materials, whose preparation remains challenging. Herein, a high magnetic field (HMF) strategy is proposed to prepare a biomass-derived CoFe/carbon fiber (CoFe/CF) composite, in which CoFe magnetic particles are aligned in CFs, creating magnetic coupling and fast electron transmission channels. The graphitization degree of CFs is improved via the "migration catalysis" of CoFe particles under HMF. The HMF-derived CoFe/CF shows a largely broadened EM wave absorption bandwidth under ultralight and ultrathin conditions (1.5 mm). Its absorption bandwidth increases 5-10 times compared with conventional CoFe/CF that has randomly distributed CoFe particles and surpasses the reported analogues. A device model for EM energy absorption and reuse is designed based on the HMF-derived CoFe/CF membrane, which exhibits a 300% higher capability than conventional CoFe/CF membrane in converting EM energy to thermal energy. This work offers a new strategy for the design and fabrication of broadband, ultrathin, and ultralight EM wave absorption materials and demonstrates a potential conversion approach of the waste EM energy.

8.
Materials (Basel) ; 13(23)2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33291352

ABSTRACT

The microstructure and nanoindentation hardness of unirradiated, irradiated, annealed and corroded SiC coatings were characterized. Irradiation of 400 keV C+ and 200 keV He+ with approximately 10 dpa did not cause obvious amorphous transformation to nanocrystal SiC coatings and induced helium bubbles with 2-3 nm dimension distributed uniformly in the SiC matrix. High temperature annealing resulted in the transformation of SiC nanocrystals into columnar crystals in the irradiated region. Line-shaped bubble bands formed at the columnar crystal boundaries and their stacking fault planes and made the formation of microcracks of hundreds of nanometers in length. Meanwhile, some isolated helium bubbles distributed in SiC grains still maintained a size of 2-3 nm, despite annealing at 1200 °C for 5 h. The SiC coating showed excellent corrosion resistance under high-temperature, high-pressure water. The weight of the sample decreased with the increase of corrosion time. The nanoindentation hardness and the elastic modulus increased significantly with C+ and He+ irradiation, while their values decreased with high-temperature annealing. An increase in the annealing temperature led to an increased reduction in the values. Corrosion caused the decrease of nanoindentation hardness and the elastic modulus in the whole test depth range, whether the samples were irradiated or unirradiated.

9.
Materials (Basel) ; 13(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32917046

ABSTRACT

Recently, heterogeneous structured metals have attracted extensive interest due to their exciting mechanical properties. In this work, an AlN/Al nanocomposite with heterogeneous distribution of AlN nanoparticles was successfully prepared by a liquid-solid reaction method combined with subsequent extrusion deformation, which behaves an excellent synergy of tensile strength and ductility. In order to further reveal the particle distribution evolution and the tensile property response during further deformation, a series of rolling treatments with different thickness reductions under room temperature and 300 °C was carried out. The results show that the yield strength and tensile strength of the composites increase significantly from 238 MPa, 312 MPa to 312 MPa, 360 MPa after 85% rolling reduction at 300 °C. While the elongation decreased from 15.5% to 9.8%. It is also noticed that the elongation and tensile strength of the nanocomposites increases simultaneously with increasing deformation. It is considered that the aluminum matrix strengthening effect accounts for the strength enhancement. The AlN spatial distribution in the matrix becomes more homogeneous gradually during the rolling, which is supposed to reduce the stress concentration between the particle and matrix and then promote the ductility increase.

10.
Materials (Basel) ; 13(18)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932601

ABSTRACT

To synthesize Al composite with high strength at elevated temperature, high modulus and thermal stability, ZrB2, Al3BC and Al2O3 particles have been chosen as reinforcements simultaneously. A (9.2 wt.% ZrB2 + 5.6 wt.% Al3BC + 5.5 wt.% Al2O3)/Al composite has been prepared, and the in-situ synthesized particles are nano-sized. Mechanical property tests reveal that the nanoparticles exhibit a remarkable synergistic enhancement effect. The elasticity modulus of the composite is 89 GPa, and the ultimate tensile strengths at 25 °C and 350 °C can be as high as 371 MPa and 154 MPa, respectively.

11.
J Agric Food Chem ; 68(2): 633-641, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31891488

ABSTRACT

As typical perfluorinated compounds (PFCs), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been detected in various environmental media and their toxic effects have been extensively studied. Nevertheless, it remains unclear how PFCs cause cell apoptosis in healthy hepatocytes by inducing oxidative stress at the subcellular and molecular levels. In this study, the apoptotic pathways induced by PFOA and PFOS were explored. Besides, the effects of PFCs on the structure and function of lysozyme (LYZ) were investigated. After PFOA and PFOS exposure, the cell membrane and mitochondrial membrane potential were damaged. Further, PFOA and PFOS increased intracellular Ca2+ levels to 174.41 ± 1.70 and 158.91 ± 5.94%, respectively. Ultimately, caspase-3 was activated, causing cell apoptosis. As an indirect antioxidant enzyme, the molecular structure of LYZ was destroyed after interacting with PFOA and PFOS. Both PFOA and PFOS bound to the active center of LYZ, leading to the decrease of LYZ activity to 91.26 ± 0.78 and 76.01 ± 4.86%, respectively. This study demonstrates that PFOA and PFOS inhibit LYZ function, which can reduce the body's ability to resist oxidative stress, and then lead to mitochondria-mediated apoptosis.


Subject(s)
Alkanesulfonic Acids/pharmacology , Apoptosis/drug effects , Caprylates/pharmacology , Fluorocarbons/pharmacology , Hepatocytes/drug effects , Calcium/metabolism , Caspase 3/metabolism , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Oxidative Stress/drug effects
12.
Luminescence ; 30(5): 693-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25351393

ABSTRACT

In order to evaluate the toxicity of multi-walled carbon nanotubes (MWCNTs-COOH) at a molecular level, the effect of MWCNTs-COOH on antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) was investigated using fluorescence spectroscopy, UV/vis absorption spectroscopy, circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC). By deducting the inner filter effect (IFE), the fluorescence emission spectra and synchronous fluorescence spectra indicated that there were interactions between MWCNTs-COOH and Cu/ZnSOD. Moreover, the microenvironment of the amino acid residues in the enzyme was changed slightly. The UV/vis absorption and CD spectroscopic results showed appreciable conformational changes in Cu/ZnSOD. However, the results of a Cu/ZnSOD activity determination did not show any significant difference. In other words, MWCNTs-COOH has no significant effect on enzyme activity. The ITC results showed that the binding of MWCNTs-COOH to Cu/ZnSOD was a weak endothermic process, indicating that the predominant force of the binding was hydrophobic interaction. Moreover, it was essential to consider the IFE in fluorescence assays, which might affect the accuracy and precision of the results. The above results are helpful in evaluating the oxidative stress induced by MWCNTs-COOH in vivo.


Subject(s)
Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Superoxide Dismutase/chemistry , Calorimetry/methods , Circular Dichroism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/metabolism , Thermodynamics
13.
J Fluoresc ; 24(6): 1803-10, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25323557

ABSTRACT

Heavy metals possess great endangerment to environment even human health because of their indissolubility and bioaccumulation. The toxicity of heavy metal ions (Cu(2+), Pb(2+), Zn(2+)) to trypsin was investigated by fluorescence, synchronous fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), and enzyme activity assay. The experimental results showed that toxic effect of heavy metal ions was due to their own characteristic, rather than the electric charges of the ion. Zn(2+) could not show the obvious toxicity to trypsin, while the structure and function of trypsin was damaged when the enzyme explored to Cu(2+) and Pb(2+). From the spectra results, we found that Cu(2+) would bind with trypsin, which lead to the fluorescence quenched and hydrophobicity increased. Pb(2+) could also change the structure and reduce the activity of trypsin in high concentration. In vitro measurement, the toxicity order of heavy metal ions to trypsin is: Cu(2+) > Pb(2+) > Zn(2+). In addition, isothermal titration calorimetry analysis proved that the interactions between Cu(2+), Pb(2+), Zn(2+) and trypsin were all spontaneous and exothermic, which indicated the adverse effect of these heavy metal ions to trypsin.

14.
Zhongguo Dang Dai Er Ke Za Zhi ; 16(8): 805-9, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25140772

ABSTRACT

OBJECTIVE: To investigate the safety and efficacy of low-concentration inhaled nitric oxide (NO) in the treatment of hypoxic respiratory failure (HRF) among premature infants. METHODS: Sixty premature infants (gestational age ≤ 34 weeks) with HRF were randomized into NO and control groups between 2012 and 2013, with 30 cases in each group. Both groups received nasal continuous positive airway pressure (nCPAP) or mechanical ventilation. NO inhalation was continued for at least 7 days or until weaning in the NO group. The general conditions, blood gas results, complications, and clinical outcomes of the two groups were analyzed. RESULTS: The NO group showed significantly more improvement in blood gas results than the control group after 12 hours of treatment (P<0.05). After that, the change in oxygenation status over time showed no significant difference between the two groups (P>0.05). There were no significant differences in total time of assisted ventilation and duration of oxygen therapy between the two groups (P>0.05). The incidence of bronchopulmonary dysplasia (BPD), patent ductus arteriosus, necrotizing enterocolitis, retinopathy of prematurity, and pneumothorax in infants showed no significant differences between the NO and control groups (P>0.05), but the incidence of IVH and mortality were significantly lower in the NO group than in the control group (7% vs 17%, P<0.05; 3% vs 13%, P<0.05). CONCLUSIONS: NO inhalation may improve oxygenation status and reduce the mortality in premature infants with HRF, but it cannot reduce the incidence of BPD and the total time of mechanical ventilation or nCPAP and duration of oxygen therapy. NO therapy may have a brain-protective effect for premature infants with HRF and does not increase clinical complications.


Subject(s)
Hypoxia/complications , Nitric Oxide/administration & dosage , Respiratory Insufficiency/drug therapy , Administration, Inhalation , Blood Gas Analysis , Bronchopulmonary Dysplasia/epidemiology , Humans , Incidence , Infant, Newborn , Infant, Premature , Respiratory Insufficiency/blood , Respiratory Insufficiency/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...