Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 138: 112452, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943972

ABSTRACT

Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.

2.
Nat Commun ; 15(1): 5355, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918419

ABSTRACT

The bulk photovoltaic effect (BPVE) originating from spontaneous charge polarizations can reach high conversion efficiency exceeding the Shockley-Queisser limit. Emerging van der Waals (vdW) heterostructures provide the ideal platform for BPVE due to interfacial interactions naturally breaking the crystal symmetries of the individual constituents and thus inducing charge polarizations. Here, we show an approach to obtain ultrafast BPVE by taking advantage of dual interfacial polarizations in vdW heterostructures. While the in-plane polarization gives rise to the BPVE in the overlayer, the charge carrier transfer assisted by the out-of-plane polarization further accelerates the interlayer electronic transport and enhances the BPVE. We illustrate the concept in MoS2/black phosphorus heterostructures, where the experimentally observed intrinsic BPVE response time achieves 26 ps, orders of magnitude faster than that of conventional non-centrosymmetric materials. Moreover, the heterostructure device possesses an extrinsic response time of approximately 2.2 ns and a bulk photovoltaic coefficient of 0.6 V-1, which is among the highest values for vdW BPV devices reported so far. Our study thus points to an effective way of designing ultrafast BPVE for high-speed photodetection.

3.
ACS Appl Mater Interfaces ; 16(26): 33388-33395, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912593

ABSTRACT

All-solid-state lithium (Li) batteries have attracted considerable interest due to their potential in high energy density as well as safety. However, the realization of a stable Li/solid-state electrolyte (SSE) interface remains challenging. Herein, two-dimensional graphene-like C3N4 (g-C3N4) as a coating layer on Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte (LATP@CN) has been applied to construct the stable Li/SSE interface. The g-C3N4 layer is uniformly coated on the LATP surface using the in situ calcination method, which not only enhances the dispersibility of LATP particles in poly(ethylene oxide) (PEO) through the interaction between surface functional groups but also suppresses the side reactions between Li and LATP. The coating layer can effectively improve the interfacial stability. As a result, the conductivity and stability of the obtained composite solid-state electrolytes (CSEs) against Li are enhanced. The Li∥CSEs∥Li symmetric cells stably cycle for 670 and 600 h at 0.1 and 0.2 mA cm-2, respectively. The Li∥CSEs∥LiFePO4 cells stably cycle more than 100 times at 0.1 and 0.2 C with a capacity retention rate of about 86% and 88%, respectively. This work inspires a new strategy to avoid the reactions between LATP and Li.

4.
Mol Immunol ; 169: 50-65, 2024 May.
Article in English | MEDLINE | ID: mdl-38493581

ABSTRACT

Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1ß) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.


Subject(s)
Chemokine CXCL1 , Peripheral Nerve Injuries , Receptors, Interleukin-8B , Animals , Mice , Chemokine CXCL1/metabolism , Macrophages/metabolism , Phenylurea Compounds/pharmacology , Sciatic Nerve
5.
Int Immunopharmacol ; 129: 111601, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38350354

ABSTRACT

Understanding the mechanisms of resistance of hepatocellular carcinoma (HCC) to targeted therapies and immune checkpoint blockade is critical for the development of new combination therapies and improving patient survival. Here, we found that in HCC, anti-programmed cell death 1 ligand 1 (PD-L1) therapy reduces liver cancer growth, but the tumors eventually become resistant to continued therapy. Experimental analyses shows that the infiltration of pathogenic T helper 17 (pTh17) cells increases in drug-resistant HCC, and pTh17 cells secrete interleukin-17A (IL-17A), which promotes the expression of PD-L1 on the surface of HCC cells and produces resistance to anti-PD-L1 therapy. Anti-IL-17A combined with PD-L1 blockade significantly increased the infiltration of cytotoxic CD8+ T cells expressing high levels of interferon-γ and reduced treatment resistance in HCC. These results support the combination of anti-PD-L1 and anti-IL-17A as a novel strategy to induce effective T cell-mediated anti-tumor immune responses.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , CD8-Positive T-Lymphocytes , B7-H1 Antigen/metabolism , Th17 Cells/metabolism , Immunotherapy/methods , Antibodies, Monoclonal/metabolism , Tumor Microenvironment
6.
Angew Chem Int Ed Engl ; 63(13): e202316837, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38315104

ABSTRACT

The interfacial processes, mainly the lithium (Li) plating/stripping and the evolution of the solid electrolyte interphase (SEI), are directly related to the performance of all-solid-state Li-metal batteries (ASSLBs). However, the complex processes at solid-solid interfaces are embedded under the solid-state electrolyte, making it challenging to analyze the dynamic processes in real time. Here, using in situ electrochemical atomic force microscopy and optical microscopy, we directly visualized the Li plating/stripping/replating behavior, and measured the morphological and mechanical properties of the on-site formed SEI at nanoscale. Li spheres plating/stripping/replating at the argyrodite solid electrolyte (Li6 PS5 Cl)/Li electrode interface is coupled with the formation/wrinkling/inflating of the SEI on its surface. Combined with in situ X-ray photoelectron spectroscopy, details of the stepwise formation and physicochemical properties of SEI on the Li spheres are obtained. It is shown that higher operation rates can decrease the uniformity of the Li+ -conducting networks in the SEI and worsen Li plating/stripping reversibility. By regulating the applied current rates, uniform nucleation and reversible plating/stripping processes can be achieved, leading to the extension of the cycling life. The in situ analysis of the on-site formed SEI at solid-solid interfaces provides the correlation between the interfacial evolution and the electrochemical performance in ASSLBs.

7.
Adv Mater ; 36(3): e2307768, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37852012

ABSTRACT

All-solid-state lithium (Li) metal batteries (ASSLMBs) employing sulfide solid electrolytes have attracted increasing attention owing to superior safety and high energy density. However, the instability of sulfide electrolytes against Li metal induces the formation of two types of incompetent interphases, solid electrolyte interphase (SEI) and mixed conducting interphase (MCI), which significantly blocks rapid Li-ion transport and induces uneven Li deposition and continuous interface degradation. In this contribution, a dynamically stable mixed conducting interphase (S-MCI) is proposed by in situ stress self-limiting reaction to achieve the compatibility of Li metal with composite sulfide electrolytes (Li6 PS5 Cl (LPSCl) and Li10 GeP2 S12 (LGPS)). The rational design of composite electrolytes utilizes the expansion stress induced by the electrolyte decomposition to in turn constrain the further decomposition of LGPS. Consequently, the S-MCI inherits the high dynamical stability of LPSCl-derived SEI and the lithiophilic affinity of Li-Ge alloy in LGPS-derived MCI. The Li||Li symmetric cells with the protection of S-MCI can operate stably for 1500 h at 0.5 mA cm-2 and 0.5 mAh cm-2 . The Li||NCM622 full cells present stable cycling for 100 cycles at 0.1 C with a high-capacity retention of 93.7%. This work sheds fresh insight into constructing electrochemically stable interphase for high-performance ASSLMBs.

8.
Micromachines (Basel) ; 14(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38138395

ABSTRACT

Multi-channel high-speed wire electrical discharge machining (HSWEDM) has shown great potential in enhancing the cutting rate of metal workpieces. However, the mechanism of multi-channel discharges in this technique remains unclear. In this paper, the equivalent circuit and processing model of the multi-channel HSWEDM were developed to investigate the discharge characteristics. It was found that the equipotential between electrodes is the primary factor causing electrical signal coupling between channels, hindering the achievement of synchronous discharge. To address this issue, a novel power supply with a decoupling circuit was devised. By utilizing the combined effect of electrode wire resistance and current limiting resistance (Rc), a potential difference was induced between electrodes in different channels, enabling electrical signal decoupling and facilitating synchronous discharge. The impact of Rc on synchronous discharge was examined, revealing that a reduction in Rc can increase the gap voltage of non-breakdown channels, thereby enhancing the discharge ratio. Finally, cutting rate experiments were conducted. When the new power supply was used for electrical signal decoupling, the cutting rates of multi-channel WEDM were significantly improved. Compared to single-channel HSWEDM, the cutting rates of two-channel and four-channel HSWEDM are enhanced by 84.06% and 247.83%, respectively.

9.
Int Immunopharmacol ; 123: 110757, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37579542

ABSTRACT

Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Immunity, Innate , Interleukin-17 , Neoplasms/drug therapy , Th17 Cells
10.
Int Immunopharmacol ; 120: 110330, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37247498

ABSTRACT

The C-X-C chemokine ligand (CXCL) 1 and its receptor C-X-C chemokine receptor (CXCR) 2 are widely expressed in the peripheral nervous systems (PNS) and central nervous systems (CNS) and are involved in the development of inflammation and pain after various nerve injuries. Once a nerve is damaged, it affects not only the neuron itself but also lesions elsewhere in its dominant site. After the CXCL1/CXCR2 axis is activated, multiple downstream pathways can be activated, such as c-Raf/MAPK/AP-1, p-PKC-µ/p-ILK/NLRP3, JAK2/STAT3, TAK1/NF-κB, etc. These pathways in turn mediate cellular motility state or cell migration. CXCR2 is expressed on the surface of neutrophils and monocytes/macrophages. These cells can be recruited to the lesion through the CXCL1/CXCR2 axis to participate in the inflammatory response. The expression of CXCR2 in neurons can activate some pathways in neurons through the CXCL1/CXCR2 axis, thereby causing damage to neurons. CXCR2 is also expressed in astrocytes, and when CXCR2 activated, it increases the number of astrocytes but impairs their function. Since inflammation can occur at almost any site of injury, elucidating the mechanism of CXCL1/CXCR2 axis' influence on inflammation may provide a favorable target for clinical treatment. Therefore, this article reviews the research progress of the CXCL1/CXCR2 axis in neurological diseases, aiming to provide a more meaningful theoretical basis for the treatment of neurological diseases.


Subject(s)
Nervous System Diseases , Pain , Humans , Chemokine CXCL1/metabolism , Pain/pathology , Inflammation/metabolism , NF-kappa B/metabolism , Nervous System Diseases/metabolism , Neurons/metabolism , Receptors, Interleukin-8B/metabolism
11.
Small Methods ; 7(6): e2300392, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37186499

ABSTRACT

Water-in-salt (WIS) electrolyte is considered as one of most promising systems for aqueous zinc batteries (AZBs) due to its dendrite-free plating/stripping with nearly 100% Coulombic efficiency. However, the understanding of the interfacial mechanisms remains elusive, which is crucial for further improvements in battery performance. Herein, the interfacial processes of solid electrolyte interphase (SEI) formation and subsequent Zn plating/stripping are monitored by in situ atomic force microscopy and in situ optical microscopy. The live formation of uniform and compact LiF-rich SEI in WIS systems could induce the uniform hexagonal Zn deposition with preferential orientation growth in the (002) crystal plane, showing excellent plating/stripping reversibility. In contrast, the SEI formed in 1 m zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2 ) is uneven and rich in inert ZnO, adversely triggering the dendrite propagation and successive "dead" Zn accumulation in repeated deposition/dissolution cycles. This work provides an in-depth understanding of the relationship between SEI evolution and Zn-deposited behaviors in AZBs, possibly stimulating more research on rational composition design and structural optimization of solid/liquid interface for advanced rechargeable aqueous multivalent-ion batteries.

12.
Environ Sci Ecotechnol ; 16: 100262, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37251520

ABSTRACT

•The advanced technologies of the first carbon-neutral Olympic Games are introduced.•Successful application experience of each technology is introduced.•This correspondence is conducive to the promotion and application of technologies.

13.
Article in English | MEDLINE | ID: mdl-36409012

ABSTRACT

Thermal ablation has become a novel method for the treatment of pulmonary nodules, but the short-time evaluation of the ablation effect is mainly based on computed tomography images. We report a case of local tumour residue after microwave ablation, which was confirmed by pathology after lobectomy. This case alerts us that thermal ablation should not be the preferred treatment for operable pulmonary nodules.


Subject(s)
Hyperthermia, Induced , Lung Neoplasms , Multiple Pulmonary Nodules , Radiofrequency Ablation , Humans , Microwaves/adverse effects , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery
14.
Angew Chem Int Ed Engl ; 61(48): e202211626, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36181671

ABSTRACT

Single-crystalline Ni-rich cathode (SC-NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid-state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3 PO4 is introduced to coat SC-NCM (L-NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC-NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC-NCM particle. Remarkably, the formed amorphous LiF-rich CEI on L-NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on-site tracking provides deep insights into surface mechanism and structure-reactivity correlation of SC-NCM, and thus benefits the optimizations of SSLBs.

15.
Angew Chem Int Ed Engl ; 61(52): e202212744, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36310122

ABSTRACT

Lithium-sulfur batteries are promising candidates of energy storage devices. Both adjusting salt/solvent ratio and applying quasi-solid-state electrolytes are regarded as effective strategies to improve the lithium (Li) anode performance. However, reaction mechanisms and interfacial properties in quasi-solid-state lithium-sulfur (QSSLS) batteries with high salt concentration are not clear. Here we utilize in-situ characterizations and molecular dynamics simulations to unravel aforesaid mysteries, and construct relationships of electrolyte structure, interfacial behaviour and performance. The generation mechanism, formation process, and mechanical/chemical/electrochemical properties of the anion-derived solid electrolyte interphase (SEI) are deeply explored. Li deposition uniformity and dissolution reversibility are further tuned by the sustainable SEI. These straightforward evidences and deepgoing studies would guide the electrolyte design and interfacial engineering of QSSLS batteries.

16.
Can Respir J ; 2022: 9149385, 2022.
Article in English | MEDLINE | ID: mdl-36106062

ABSTRACT

Introduction: This study is conducted to investigate the correlation between perioperative fractional exhaled nitric oxide and postoperative pneumonia (POP) and the feasibility of perioperative FeNO for predicting POP in surgical lung cancer patients. Methods: Patients who were diagnosed with non-small-cell lung cancer (NSCLC) were prospectively analyzed, and the relationship between perioperative FeNO and POP was evaluated based on patients' basic characteristics and clinical data in the hospital. Results: There were 218 patients enrolled in this study. Finally, 183 patients were involved in the study, with 19 of them in the POP group and 164 in the non-POP group. The POP group had significantly higher postoperative FeNO (median: 30.0 vs. 19.0 ppb, P < 0.001) as well as change in FeNO (median: 10.0 vs. 0.0 ppb, P < 0.001) before and after the surgery. For predicting POP based on the receiver operating characteristic (ROC) curve, a cutoff value of 25 ppb for postoperative FeNO (Youden's index: 0.515, sensitivity: 78.9%, and specificity: 72.6%) and 4 ppb for change in FeNO (Youden's index: 0.610, sensitivity: 84.2%, specificity: 76.8%) were selected. Furthermore, according to the bivariate regression analysis, FEV1/FVC (OR = 0.948, 95% CI: 0.899-0.999, P=0.048), POD1 FeNO (OR = 1.048, 95% CI: 1.019-1.077, P=0.001), and change in FeNO (OR = 1.087, 95% CI: 1.044-1.132, P < 0.001) were significantly associated with occurrence of POP. Conclusions: This prospective study revealed that a high postoperative FeNO (>25 ppb), as well as an increased change in FeNO (>4 ppb), may have the potential in detecting the occurrence of POP in surgical lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pneumonia , Breath Tests , Carcinoma, Non-Small-Cell Lung/surgery , Humans , Lung Neoplasms/surgery , Nitric Oxide/analysis , Pneumonia/diagnosis , Prospective Studies
17.
J Am Chem Soc ; 144(21): 9354-9362, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35561032

ABSTRACT

All-carbon graphdiyne (GDY)-based materials have attracted extensive attention owing to their extraordinary structures and outstanding performance in electrochemical energy storage. Straightforward insights into the interfacial evolution at GDY electrode/electrolyte interface could crucially enrich the fundamental comprehensions and inspire targeted regulations. Herein, in situ optical microscopy and atomic force microscopy monitoring of the GDY and N-doped GDY electrodes reveal the interplay between the solid electrolyte interphase (SEI) and Li deposition. The growth and continuous accumulation of the flocculent-like SEI is directly tracked at the surface of GDY electrode. Moreover, the nanoparticle-shaped SEI homogeneously propagates at the interface when N configurations are involved, providing a critical clue for the N-doping effects of stabilizing interfaces and homogenizing Li deposition. This work probes into the dynamic evolution and structure-reactivity correlation in detail, creating effective strategies for GDY-based materials optimization in lithium-ion batteries.

18.
Sensors (Basel) ; 22(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408065

ABSTRACT

In the past 20 years, many studies have been performed on ballast layer inspection and condition evaluation with ground penetrating radar (GPR). GPR is a non-destructive means that can reflect the ballast layer condition (fouling, moisture) by analysing the received signal variation. Even though GPR detection/inspection for ballast layers has become mature, some challenges still need to be stressed and solved, e.g., GPR indicator (for reflecting fouling level) development, quantitative evaluation for ballast fouling levels under diverse field conditions, rapid GPR inspection, and combining analysis of GPR results with other data (e.g., track stiffness, rail acceleration, etc.). Therefore, this paper summarised earlier studies on GPR application for ballast layer condition evaluation. How the GPR was used in the earlier studies was classified and discussed. In addition, how to correlate GPR results with ballast fouling level was also examined. Based on the summary, future developments can be seen, which is helpful for supplementing standards of ballast layer evaluation and maintenance.


Subject(s)
Radar
19.
Can Respir J ; 2021: 5888783, 2021.
Article in English | MEDLINE | ID: mdl-34956429

ABSTRACT

Introduction: Postoperative ineffective cough is easy to occur after thoracic surgery, and it is also a risk factor for postoperative pulmonary complications (PPCs). Objectives: To explore the value of peak expiratory flow rate (PEF) in evaluating cough ability in patients undergoing lung surgery and evaluate the effectiveness of chest wall compression during the expiratory phase by PEF. Methods: From September 2020 to May 2021, the researchers collected the data of patients who underwent lung surgery. Eventually, 153 patients who met the criteria were included, 102 cases were included in the effective cough group and 51 cases were included in the ineffective cough group. The receiver working curve (ROC curve) was used to analyze whether PEF could evaluate cough ability. At the same time, the researchers collected the pulmonary function data of the first 30 patients of the ineffective cough group while compressing the chest wall during the expiratory phase to evaluate the effectiveness of chest wall compression. Results: The area under the curve (AUC) of postoperative PEF to evaluate the postoperative cough ability was 0.955 (95% CI: 0.927-0.983, P < 0.001). The values of PEF (127.17 ± 34.72 L/min vs. 100.70 ± 29.98 L/min, P < 0.001, 95% CI: 18.34-34.59) and FEV1 (0.72 (0.68-0.97) L vs. 0.64 (0.56-0.82) L, P < 0.001) measured while compressing the chest wall were higher than those without compression. Conclusions: PEF can be used as a quantitative indicator of cough ability. Chest wall compression could improve cough ability for patients who have ineffective cough.


Subject(s)
Cough , Pulmonary Surgical Procedures , Exhalation , Humans , Lung , Peak Expiratory Flow Rate
20.
J Environ Manage ; 296: 113232, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34246901

ABSTRACT

Fine particulate matter (PM2.5) has become a major pressing challenge for China and remains a concern of its central government. This paper draws on a natural experiment generated by the National Ambient Air Quality Monitoring Network (NAAQMN) program in China to explore whether national air quality monitoring reduces local air pollution. In this study, we use a city-level dataset for 4200 Chinese cities covering 2001-2015 and a difference-in-differences (DID) assessment design to assess the impact of the NAAQMN program on local PM2.5 emissions in China. The results suggest that the NAAQMN program significantly reduces the local PM2.5 concentrations by 1.325 mg/m3, and each additional NAAQMN program will cause a decrease of 0.154 mg/m3 in the local PM2.5 concentrations. Furthermore, we determine the heterogeneous impacts of the NAAQMN program on local PM2.5 emission levels through the local government leaders' characteristics, PM2.5 emission levels, and economic development levels. In addition, a mediation effect is found between the NAAQMN program and local PM2.5 emissions through the efficiency of environmental governance. The Chinese government should continue to promote the implementation of the NAAQMN program by promoting the NAAQMN program to the county and rural areas as well as adding the sites of the NAAQMN program in the existing cities. Also, during the process of promoting the NAAQMN program, sufficient differentiation in policies should be developed for different cities.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , China , Cities , Conservation of Natural Resources , Environmental Monitoring , Environmental Policy , Local Government , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...