Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
AoB Plants ; 16(2): plae007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38435969

ABSTRACT

Life cycle (annual vs perennial) and leaf venation pattern (parallel and reticular) are known to be related to water use strategies in herb species and critical adaptation to certain climatic conditions. However, the effect of these two traits and how they influence the coordination between vein density (vein length per area, VLA) and stomatal density (SD) remains unclear. In this study, we examined the leaves of 53 herb species from a subtropical botanical garden in Guangdong Province, China, including herbs with different life cycles and leaf venation patterns. We assessed 21 leaf water-related functional traits for all species, including leaf area (LA), major and minor VLA, major and minor vein diameter (VD), SD and stomatal length (SL). The results showed no significant differences in mean SD and SL between either functional group (parallel venation vs reticular venation and annual vs perennial). However, parallel vein herbs and perennial herbs displayed a significantly higher mean LA and minor VD, and lower minor VLA compared to reticular vein herbs and annual herbs, respectively. There was a linear correlation between total VLA and SD in perennial and reticular vein herbs, but this kind of correlation was not found in annual and parallel vein herbs. The major VLA and minor VD were significantly affected by the interaction between life cycle and leaf venation pattern. Our findings suggested that VLA, rather than SD, may serve as a more adaptable structure regulated by herbaceous plants to support the coordination between leaf water supply and demand in the context of different life cycles and leaf venation patterns. The results of the present study provide mechanistic understandings of functional advantages of different leaf types, which may involve in species fitness in community assembly and divergent responses to climate changes.

2.
Front Plant Sci ; 14: 1051692, 2023.
Article in English | MEDLINE | ID: mdl-37564389

ABSTRACT

Leaf phenology (evergreen vs. deciduous) and morphology (simple vs. compound) are known to be related to water use strategies in tree species and critical adaptation to certain climatic conditions. However, the effect of these two traits and their interactions on the coordination between minor vein density (MVD) and stomatal density (SD) remains unclear. In this study, we examined the leaves of 108 tree species from plots in a primary subtropical forest in southern China, including tree species with different leaf morphologies and phenologies. We assessed nine leaf water-related functional traits for all species, including MVD, SD, leaf area (LA), minor vein thickness (MVT), and stomatal length (SL). The results showed no significant differences in mean LA and SD between either functional group (simple vs. compound and evergreen vs. deciduous). However, deciduous trees displayed a significantly higher mean MVD compared to evergreen trees. Similarly, compound-leaved trees have a higher (marginally significant) MVD than simple-leaved trees. Furthermore, we found that leaf morphology and phenology have significantly interactive effects on SL, and the compound-leafed deciduous trees exhibited the largest average SL among the four groups. There were significant correlations between the MVD and SD in all different tree groups; however, the slopes and interceptions differed within both morphology and phenology. Our results indicate that MVD, rather than SD, may be the more flexible structure for supporting the coordination between leaf water supply and demand in different leaf morphologies and phenologies. The results of the present study provide mechanistic understandings of the functional advantages of different leaf types, which may involve species fitness in community assembly and divergent responses to climate changes.

3.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982522

ABSTRACT

Rice is one of the most economically important staple food crops in the world. Soil salinization and drought seriously restrict sustainable rice production. Drought aggravates the degree of soil salinization, and, at the same time, increased soil salinity also inhibits water absorption, resulting in physiological drought stress. Salt tolerance in rice is a complex quantitative trait controlled by multiple genes. This review presents and discusses the recent research developments on salt stress impact on rice growth, rice salt tolerance mechanisms, the identification and selection of salt-tolerant rice resources, and strategies to improve rice salt tolerance. In recent years, the increased cultivation of water-saving and drought-resistance rice (WDR) has shown great application potential in alleviating the water resource crisis and ensuring food and ecological security. Here, we present an innovative germplasm selection strategy of salt-tolerant WDR, using a population that is developed by recurrent selection based on dominant genic male sterility. We aim to provide a reference for efficient genetic improvement and germplasm innovation of complex traits (drought and salt tolerance) that can be translated into breeding all economically important cereal crops.


Subject(s)
Oryza , Water , Droughts , Salt Tolerance/genetics , Plant Breeding , Soil , Salinity
4.
Plant Cell ; 35(1): 453-468, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36190337

ABSTRACT

RAC/Rho of plant (ROP) GTPases are major molecular switches that control diverse signaling cascades for plant growth, development, and defense. Here, we discovered a signaling node that connects RAC/ROPs to cytokinins. Rice (Oryza sativa) plants develop a fibrous root system mainly composed of crown roots. Cytokinin signaling via a phosphorelay system is critical for crown root development. We show that OsRopGEF10, which activates RAC/ROPs, acts upstream of the cytoplasmic-nuclear shuttling phosphotransfer proteins AHPs of the cytokinin signaling pathway to promote crown root development. Mutations of OsRopGEF10 induced hypersensitivity to cytokinin, whereas overexpressing this gene reduced the cytokinin response. Loss of OsRopGEF10 function reduced the expression of the response regulator gene OsRR6, a repressor of cytokinin signaling, and impaired crown root development. Mutations in OsAHP1/2 led to increased crown root production and rescued the crown root defect of Osropgef10. Furthermore, auxin activates the ROP GTPase OsRAC3, which attenuates cytokinin signaling for crown root initiation. Molecular interactions between OsRopGEF10, OsRAC3, and OsAHP1/2 implicate a mechanism whereby OsRopGEF10-activated OsRAC3 recruits OsAHP1/2 to the cortical cytoplasm, sequestering them from their phosphorelay function in the nucleus. Together, our findings uncover the OsRopGEF10-OsRAC3-OsAHP1/2 signaling module, establish a link between RAC/ROPs and cytokinin, and reveal molecular crosstalk between auxin and cytokinin during crown root development.


Subject(s)
Oryza , Oryza/metabolism , GTP Phosphohydrolase Activators/metabolism , rho GTP-Binding Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Signal Transduction , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant
5.
Plants (Basel) ; 11(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36235507

ABSTRACT

Rice production is often affected by biotic and abiotic stressors. The breeding of resistant cultivars is a cost-cutting and environmentally friendly strategy to maintain a sustainable high production level. An elite water-saving and drought-resistant rice (WDR), Hanhui3, is susceptible to blast and bacterial blight (BB). This study was conducted to introgress three resistance genes (Pi2, xa5, and Xa23) for blast and BB into Hanhui3, using marker-assisted selection (MAS) for the foreground selection and a whole-genome single-nucleotide polymorphism (SNP) array for the background selection. As revealed by the whole-genome SNP array, the recurrent parent genome (RPG) recovery of the improved NIL was 94.2%. The resistance levels to blast and BB of the improved NIL and its derived hybrids were higher than that of the controls. In addition, the improved NIL and its derived hybrids retained the desired agronomic traits from Hanhui3, such as yield. The improved NIL could be useful to enhance resistance against biotic stressors and produce stable grain yields in Oryza sativa subspecies indica rice breeding programs.

6.
Front Plant Sci ; 13: 982240, 2022.
Article in English | MEDLINE | ID: mdl-36082291

ABSTRACT

The commercialization of hybrid rice has greatly contributed to the increase in rice yield, with the improvement of its seed production capacity having played an important role. The stigma exsertion rate (SER) is a key factor for improving the outcrossing of the sterile line and the hybrid rice seed production. We used the Zhenshan 97B × IRAT109 recombinant inbred population comprising 163 lines and a natural population of 138 accessions to decipher the genetic foundation of SER over 2 years in three environments. Additionally, we detected eight QTLs for SER on chromosomes 1, 2, and 8 via linkage mapping. We also identified seven and 19 significant associations for SER using genome-wide association study in 2016 and 2017, respectively. Interestingly, we located two lead SNPs (sf0803343504 and sf083344610) on chromosome 8 in the qTSE8 QTL region that were significantly associated with total SER. After transcriptomic analysis, quantitative real-time PCR, and haplotype analysis, we found 13 genes within this reliable region as important candidate genes. Our study results will be beneficial to molecular marker-assisted selection of rice lines with high outcrossing rate, thereby improving the efficiency of hybrid seed production.

8.
Sci Total Environ ; 851(Pt 1): 158108, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35987224

ABSTRACT

Leaf form (compound vs. simple) and habit (evergreen vs. deciduous) are key functional traits of trees to adapt to various climates and are vital in determining plant response to climate change. However, their association and climatic determinants remain uncertain, especially in East Asian forests in the largest monsoon region on earth. To fill these knowledge gaps, we compiled a dataset comprising 42 intact forests and over 2200 angiosperm tree species across China (spanning 30 latitudes and 47 longitudes). The geographical and climatic patterns of leaf form and habit were analyzed. The association between compound leaf and deciduousness was tested for tropical, subtropical and temperate climatic zones. We found that both the percentage of compound leaf (CT%) and deciduous tree species (DT%) increased with latitude and decreased with mean annual precipitation (MAP). For all forests, DT% was negatively related to mean annual temperature (MAT), whereas CT% was not. Nevertheless, both DT% and CT% increased with increasing MAT in the tropics, possibly owing to the high vapor pressure deficits (VPD) and canopy water deficits associated with high temperatures. A positive linear relationship between CT% and DT% was found across all forests and within different climatic zones except for temperate, and the intercept of the regression line was significantly higher in the tropics than in the subtropics. Overall, as supported by principal component analysis, deciduousness was negatively associated with both temperature and precipitation, while CT negatively with precipitation only across zones and positively with temperature in the tropics. Different relationships in different climatic zones suggest potentially different selective forces. Our findings provide novel insights into the linkage between leaf form and habit, as well as how climate shapes the landscape of broadleaf forests, which has important implications regarding the response of forest composition to climate change.


Subject(s)
Forests , Trees , China , Habits , Plant Leaves/physiology , Trees/physiology , Water
9.
Front Plant Sci ; 13: 938476, 2022.
Article in English | MEDLINE | ID: mdl-35845661

ABSTRACT

Eukaryotic translation initiation factor 4E1 (eIF4E1) is required for the initiation of protein synthesis. The biological function of eIF4E1 in plant-potyvirus interactions has been extensively studied. However, the role of eIF4E1 in Arabidopsis development remains unclear. In this study, we show that eIF4E1 is highly expressed in the embryo and root apical meristem. In addition, eIF4E1 expression is induced by auxin. eIF4E1 mutants show embryonic cell division defects and short primary roots, a result of reduced cell divisions. Furthermore, our results show that mutation in eIF4E1 severely reduces the accumulation of PIN-FORMED (PIN) proteins and decreases auxin-responsive gene expression at the root tip. Yeast two-hybrid assays identified that eIF4E1 interacts with an RAC/ROP GTPase activator, RopGEF7, which has been previously reported to be involved in the maintenance of the root apical meristem. The interaction between eIF4E1 and RopGEF7 is confirmed by protein pull-down and bimolecular fluorescent complementation assays in plant cells. Taken together, our results demonstrated that eIF4E1 is important for auxin-regulated embryo development and root growth. The eIF4E1-RopGEF7 interaction suggests that eIF4E1 may act through ROP signaling to regulate auxin transport, thus regulating auxin-dependent patterning.

10.
Mol Breed ; 42(8): 46, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37313512

ABSTRACT

The japonica water-saving and drought-resistance rice (Oryza sativa L.) (WDR) cultivar Huhan 9 harbors genes for resistance to rice blast (Magnaporthe oryzae), including Pi-ta and Pi-b. The early maturing japonica rice cultivar Suhuxiangjing and the high-yield WDR cultivars Huhan 3 and Huhan 11 were used as the parents to conduct single cross breeding and composite hybridization breeding. Strict drought resistance screening was conducted in the segregating generations, the genotypes of which were determined using functional markers of Pi-ta and Pi-b genes. By combining the rapid generation advance of the industrialized breeding system and multi-site shuttle identification, the new WDR cultivar Huhan 106 with early maturity, blast resistance, high yield, and high quality was bred, and it was certified by the Agricultural Crop Variety Certification Commission of Shanghai in 2020. Molecular marker-assisted selection coupled with rapid generation advance and multi-site shuttle identification is a rapid and efficient breeding method for the value-added improvement of crop varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01319-3.

11.
Rice (N Y) ; 14(1): 96, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34825287

ABSTRACT

BACKGROUND: The two-line method based on the photoperiod and thermo-sensitive genic male sterile (PTGMS) lines is more cost-effective, simple, and efficient than the three-line system based on cytoplasmic male-sterility. Blast and drought are the most prevalent biotic and abiotic stress factors hampering rice production. Molecular techniques demonstrate higher efficacy in the pyramiding of disease resistance genes, providing green performance under the background of water-saving and drought-resistance rice. RESULTS: This study employed molecular marker-assisted selection, conventional hybridization, and high-intensity stress screening to integrate three broad-spectrum blast resistance genes Pi9, Pi5, and Pi54 into Huhan 1S. Subsequently, a novel water-saving and drought-resistance rice (WDR) PTGMS line Huhan 74S was developed. The drought resistance of the new PTGMS line Huhan 74S was comparable to that of Huhan 1S. Pathogenicity assays involving the inoculation of 14 blast prevalent isolates in the glasshouse showed that the blast resistance frequency of Huhan 74S was 85.7%. Further evaluation under natural blast epidemic field conditions showed that Huhan 74S and its hybrids were resistant to leaf and neck blast. The critical temperature point of fertility-sterility alteration of Huhan 74S was 23 °C daily mean temperature. The complete male sterility under natural growth conditions in 2017 at Shanghai lasted for 67 days. Also, both the agronomic and grain quality traits met the requirement for two-line hybrid rice production. CONCLUSION: These results indicate that the newly bred PTGMS line Huhan 74S can be used to breed high-yielding, good-quality, disease-resistant two-line hybrid water-saving and drought-resistance rice (WDR), hence promoting sustainable rice production in China.

12.
AoB Plants ; 12(5): plaa047, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33376587

ABSTRACT

Emergent aquatic plants mostly occur in shallow waters and root in bottom substrates, but their leaves emerge from the water surface and are thus exposed to air, similar to the leaves of terrestrial plants. Previous studies have found coordination between leaf water supply and demand in terrestrial plants; however, whether such a coordination exists in emergent aquatic plants remains unknown. In this study, we analysed leaf veins and stomatal characteristics of 14 emergent aquatic and 13 terrestrial monocotyledonous herb species (EMH and TMH), with 5 EMH and 8 TMH belonging to Poaceae. We found that EMH had significantly higher mean leaf area, leaf thickness, stomatal density, stomatal number per vein length and major vein diameter, but lower mean major vein length per area (VLA) and total VLA than TMH. There was no significant difference in stomatal length, minor VLA and minor vein diameter between the two groups. Stomatal density and total VLA were positively correlated among the EMH, TMH, as well as the 8 Poaceae TMH species, but this correlation became non-significant when data from both the groups were pooled. Our results showed that the differences in water supply between emergent aquatic and terrestrial plants modify the coordination of their leaf veins and stomatal traits.

13.
Evol Appl ; 13(9): 2484-2496, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33005236

ABSTRACT

INTRODUCTION: Transcriptomic divergence drives plant ecological adaptation. Upland rice is differentiated in drought tolerance from lowland rice during its adaptation to the drought-prone environment. They provide a good system to learn the evolution of drought tolerance in rice. METHODS AND RESULTS: We estimate morphological differences between the two rice ecotypes under well-watered and drought conditions, as well as their genetic and transcriptomic divergences by the high-throughput sequencing. Upland rice possesses higher expression diversity than lowland rice does. Thousands of genes exhibit expression divergences between the two rice ecotypes, which contributes to their morphological differences in drought tolerance. These transcriptomic divergences contribute to drought adaptation of upland rice during its domestication. Mutations in transcriptional regulatory regions, which cause presence and absence of cis-elements, are the cause of expression divergence. About 15.3% transcriptionally selected genes also receive sequence-based selection in upland or lowland ecotype. Some highly differentiated genes promote the transcriptomic divergence between rice ecotypes via gene co-expression network. In addition, we also detected transcriptomic trade-offs between drought tolerance and productivity. DISCUSSION: Many key genes, which promote transcriptomic adaptation to drought in upland rice, have great prospective in breeding water-saving and drought-resistant rice. Meanwhile, appropriate strategies are required in breeding to overcome the potential transcriptomic trade-off.

14.
Environ Sci Pollut Res Int ; 26(32): 33416-33426, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31522393

ABSTRACT

Fluxes of methane (CH4) and nitrous oxide (N2O) from two rice varieties, Huayou 14 and Hanyou 8, were monitored using closed chamber/gas chromatography method. Huayou 14 is a commonly grown variety of rice whereas Hanyou 8 is a water-saving and drought-resistant rice (WDR) variety. Low soil volumetric water content (VWC) existed in the treatments on the slope (W5 < W4 < W3 < W2). On the slope, rice yields of Hanyou 8 decreased by 12-39%, and Huayou 14 by 11-46% as compared to the plots on the flat. The total compatible solutes in Hanyou 8 had a greater variational range than Huayou 14. Compared to W1, CH4 emissions from W2-W5 decreased by 58-86% in Hanyou 8 and 38-86% in Huayou 14, whereas those of N2O increased by 26-121% in Hanyou 8 and 49-189% in Huayou 14 across both two seasons, which was mainly because the VWC varied in W2-W5 treatment. Under the treatments in the slope (W2, W3, W4, and W5), the global warming potential (GWP) was dominated by N2O emissions, which accounted for 69-90% of the GWP. Hanyou 8 had greater tolerance for water stress than Huayou 14 did, as evident from the smaller reductions in rice yield and greater variational range of total compatible solutes content. Water stress could reduce CH4 emissions but decrease N2O emissions for both rice varieties. This results suggest that planting WDR varieties under water shortage irrigation (such as W4, W5) will be able to maintain rice yields and reduce the GWP with less water.


Subject(s)
Agriculture/statistics & numerical data , Greenhouse Gases/analysis , Oryza , Agriculture/methods , China , Droughts , Global Warming , Greenhouse Effect , Methane/analysis , Nitrous Oxide/analysis , Seasons , Soil/chemistry
15.
Rice (N Y) ; 12(1): 46, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31289958

ABSTRACT

BACKGROUND: Stigma exsertion rate (SER) is a key determinant of outcrossing in hybrid rice seed production. A quantitative trait locus (QTL) for stigma exsertion rate in rice, qSER-7, has previously been detected on chromosome 7 by using a F2 population derived from two indica cytoplasmic male sterility (CMS) maintainers, Huhan 1B and II-32B. RESULTS: The chromosomal location of qSER-7 was precisely delimited by fine-scale mapping. Near-isogenic lines (NILs) were established, one of which isolated the locus in the qSER-7II-32B line, which contains an introgressed segment of II-32B in the Huhan 1B genetic background, and exhibits a significantly higher stigma exsertion rate than that of the recurrent parent. Using 3192 individuals from the BC4F2 segregation population, the QTL qSER-7 was narrowed down to a 28.4-kb region between the markers RM3859 and Indel4373 on chromosome 7. According to the rice genome annotation database, three genes were predicted within the target region. Real-time PCR analysis showed significantly higher expression levels of LOC_Os07g15370 and LOC_Os07g15390 in II-32B than in Huhan 1B. LOC_Os07g15370(OsNRAMP5) was a previously reported gene for Mn and Cd transporter. The stigma exertion rates of OsNRAMP5-overexpressing plants were significantly higher than that of wild type plants, in contrast, a T-DNA insertion mutant osnramp5 showed a lower stigma exertion rate. CONCLUSIONS: In the present study, the QTL qSER-7 was isolated to a region between the markers RM3859 and Indel4373. Two candidate genes were selected based on the expression difference between the two parents, which can facilitate the further cloning of the gene underlying the quantitative trait associated with qSER-7 as well as the marker-assisted transfer of desirable genes for stigma exsertion rate improvement in rice.

16.
Plant J ; 99(3): 536-555, 2019 08.
Article in English | MEDLINE | ID: mdl-31002461

ABSTRACT

The growth and development of roots in plants depends on the specification and maintenance of the root apical meristem. Here, we report the identification of CBL, a gene required for embryo and root development in Arabidopsis, and encodes cystathionine beta-lyase (CBL), which catalyzes the penultimate step in methionine (Met) biosynthesis, and which also led to the discovery of a previous unknown, but crucial, metabolic contribution by the Met biosynthesis pathway. CBL is expressed in embryos and shows quiescent center (QC)-enriched expression pattern in the root. cbl mutant has impaired embryo patterning, defective root stem cell niche, stunted root growth, and reduces accumulation of the root master regulators PLETHORA1 (PLT1) and PLT2. Furthermore, mutation in CBL severely decreases abundance of several PIN-FORMED (PIN) proteins and impairs auxin-responsive gene expression in the root tip. cbl seedlings also exhibit global reduction in histone H3 Lys-4 trimethylation (H3K4me3) and DNA methylation. Importantly, mutation in CBL reduces the abundance of H3K4me3 modification in PLT1/2 genes and downregulates their expression. Overexpression of PLT2 partially rescues cbl root meristem defect, suggesting that CBL acts in part through PLT1/2. Moreover, exogenous supplementation of Met also restores the impaired QC activity and the root growth defects of cbl. Taken together, our results highlight the unique role of CBL to maintain the root stem cell niche by cooperative actions between Met biosynthesis and epigenetic modification of key developmental regulators.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Lyases/genetics , Plant Roots/genetics , Seeds/genetics , Stem Cell Niche/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Lyases/metabolism , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Mutation , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Seeds/growth & development , Seeds/metabolism
17.
Breed Sci ; 69(4): 702-706, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31988636

ABSTRACT

Low amylose content (AC) is a desirable trait for rice (Oryza sativa L.) cooking quality and is selected in soft rice breeding. The Wx hp allele was derived from a Yunnan rice landrace in China, Haopi, with low AC. To efficiently and rapidly utilize the low amylose content-associated gene Wx hp in rice molecular breeding programs, we developed a tetra-primer amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) method, according to the single-nucleotide variation of the Wx hp . Four Wx hp -specific primers were used to perform PCR assays using genomic DNA extracted from several rice varieties. Based on the band pattern of the amplified products after electrophoresis, this method can accurately distinguish three Wx hp -related genotypes (i.e., Wx hp homozygotes, Wx hp heterozygotes, and wild-type), and the genotypes completely correspond to the appearance of mature endosperm. This method represents a novel approach that is both inexpensive and highly efficient and can be widely used for genotyping Wx hp alleles in rice germplasm collections and may aid breeding programs with marker-assisted selection (MAS).

18.
Mol Breed ; 392019.
Article in English | MEDLINE | ID: mdl-32803201

ABSTRACT

Salinity is one of the most important abiotic stress affecting the world rice production. The cultivation of salinity-tolerant cultivars is the most cost-effective and environmentally friendly approach for salinity control. In recent years, CRISPR/Cas9 systems have been widely used for target-site genome editing; however, their application for the improvement of elite rice cultivars has rarely been reported. Here, we report the improvement of the rice salinity tolerance by engineering a Cas9-OsRR22-gRNA expressing vector, targeting the OsRR22 gene in rice. Nine mutant plants were identified from 14 T0 transgenic plants. Sequencing showed that these plants had six mutation types at the target site, all of which were successfully transmitted to the next generations. Mutant plants without transferred DNA (T-DNA) were obtained via segregation in the T1 generations. Two T2 homozygous mutant lines were further examined for their salinity tolerance and agronomic traits. The results showed that, at the seedling stage, the salinity tolerance of T2 homozygous mutant lines was significantly enhanced compared to wild-type plants. Furthermore, no significantly different agronomic traits were found between T2 homozygous mutant lines and wild-type plants. Our results indicate CRISPR/ Cas9 as a useful approach to enhance the salinity tolerance of rice.

19.
Mol Plant ; 12(2): 170-184, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30584948

ABSTRACT

Drought resistance is required in rice breeding to address the challenge of frequent droughts. However, the evolutionary mechanism of rice drought resistance is not fully understood. We investigated the genetic differentiation between upland and lowland rice domesticated in agro-ecosystems with contrasting water-soil conditions using genome-wide SNPs. We estimated morphological differences among upland and lowland rice in drought resistance and productivity through common garden experiments. Upland rice had better drought resistance but poorer productivity. The negative correlations between traits of drought resistance and productivity are attributed to the underlying genetic trade-offs through tight linkages (e.g., DCA1 and OsCesA7) or pleiotropic effects (e.g., LAX1). The genetic trade-offs are common and greatly shape the evolution of drought resistance in upland rice. In genomic regions associated with both productivity and drought resistance, signs of balancing selection were detected in upland rice, while signs of directional selection were detected in lowland rice, potentially contributing to their adaptive differentiation. Signs of balancing selection in upland rice resulted from bi-directional selection during its domestication in drought-prone upland agro-ecosystems. Using genome-wide association analysis, we identified several valuable quantitative trait loci associated with drought resistance, for which highly differentiated genes should be considered candidates. Bi-directional selection breaking tight linkages by accumulating recombination events would be applicable in breeding water-saving and drought-resistance rice.


Subject(s)
Adaptation, Physiological/genetics , Droughts , Oryza/genetics , Oryza/physiology , Selection, Genetic , Evolution, Molecular , Genetic Variation , Linkage Disequilibrium , Phenotype , Species Specificity
20.
Front Plant Sci ; 8: 2023, 2017.
Article in English | MEDLINE | ID: mdl-29234339

ABSTRACT

RNA editing of mitochondrial gene transcripts plays a central role during plant development and evolutionary adaptation. RNA editing has previously been reported to differ between the rice cytoplasmic male sterile (CMS) line and its maintainer line, which has been suggested as a cause for their different performances under environmental stress. To specifically test this hypothesis, a wild abortive (WA) CMS line (Huhan-1A) and its maintainer line (Huhan-1B) were utilized to investigate performances in response to oxidative stress, as well as RNA editing efficiencies on transcripts of six selected mitochondrial genes. Compared to the maintainer line, Huhan-1A represented both lower plant height and total antioxidant capacity, possessed higher total soluble protein and chlorophyll contents, accumulated less H2O2 content on the 3rd day after treatment (DAT), and exhibited higher survival ratio after re-watering. Furthermore, a total of 90 editing sites were detected on transcripts of six mitochondrial genes (atp9, nad2, nad7, nad9, ccmB, and ccmC) in both Huhan-1A and Huhan-1B on the 0, 1st, and 3rd DAT. Forty-eight sites were furthermore determined as stress-responsive sites (SRS). Generally, in response to oxidative stress, SRS in Huhan-1A increased the resulting editing efficiencies, while SRS in Huhan-1B decreased the resulting editing efficiencies. In addition, 33 and 22 sites at ccmB and ccmC were differentially edited between Huhan-1A and Huhan-1B, respectively, on the 0, 1st, and 3rd DAT. Editing efficiencies of ccmB and ccmC were generally lower in Huhan-1A (ccmB, 37.3-47.8%; ccmC, 41.2-52.3%) than those in Huhan-1B (ccmB, 82.6-86.5%; ccmC, 81.0-82.9%). Deficiencies of RNA editing in Huhan-1A at ccmB and ccmC could lead to the loss of transmembrane domains in their protein structures. Consequently, differences in RNA editing at ccmB and ccmC between the WA-CMS line and its maintainer line partially explained their different performances under stress. Moreover, we detected differences in expressions of pentatricopeptide repeat (PPR) genes between both lines, as well as significant correlations with RNA editing. Our study indicated potential associations of RNA editing and PPR genes in rice tolerance to abiotic stresses. However, the underlying molecular mechanisms of stress-adaptation, which are attributed to RNA editing on transcripts of mitochondrial genes, require further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...