Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790385

ABSTRACT

A novel H-shaped miniplate (HSM) was specifically designed for restorative laminoplasties to restore patients' posterior elements after laminectomies. A validated finite element (FE) model of L2/4 was utilized to create a laminectomy model, as well as three restorative laminoplasty models based on the fixation of different miniplates after a laminectomy (the RL-HSM model, the RL-LSM model, and the RL-THM model). The biomechanical effects of motion and displacement on a laminectomy and restorative laminoplasty with three different shapes for the fixation of miniplates were compared under the same mechanical conditions. This study aimed to validate the biomechanical stability, efficacy, and feasibility of a restorative laminoplasty with the fixation of miniplates post laminectomy. The laminectomy model demonstrated the greatest increase in motion and displacement, especially in axial rotation, followed by extension, flexion, and lateral bending. The restorative laminoplasty was exceptional in preserving the motion and displacement of surgical segments when compared to the intact state. This preservation was particularly evident in lateral bending and flexion/extension, with a slight maintenance efficacy observed in axial rotation. Compared to the laminectomy model, the restorative laminoplasties with the investigated miniplates demonstrated a motion-limiting effect for all directions and resulted in excellent stability levels under axial rotation and flexion/extension. The greatest reduction in motion and displacement was observed in the RL-HSM model, followed by the RL-LSM model and then the RL-THM model. When comparing the fixation of different miniplates in restorative laminoplasties, the HSMs were found to be superior to the LSMs and THMs in maintaining postoperative stability, particularly in axial rotation. The evidence suggests that a restorative laminoplasty with the fixation of miniplates is more effective than a conventional laminectomy due to the biomechanical effects of restoring posterior elements, which helps patients regain motion and limit load displacement responses in the spine after surgery, especially in axial rotation and flexion/extension. Additionally, our evaluation in this research study could benefit from further research and provide a methodological and modeling basis for the design and optimization of restorative laminoplasties.

2.
J Exp Bot ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623889

ABSTRACT

Cassava is one of the most important tuber crops that is used for food, starch and bio-energy. However, cassava is susceptible to a number of diseases, especially cassava bacterial blight (CBB). Nitric oxide (NO) and hydrogen peroxide (H2O2) regulate plant growth and development, as well as stress responses. However, no direct relationships between the enzymes involved in the metabolic enzymes that produce and process these key signaling molecules has been demonstrated. Here, we provide evidence for the interaction between the nitrate reductase 2 (MeNR2) and catalase 1 (MeCAT1) proteins in vitro and in vivo, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, respectively. MeNR2 is a positive regulator and MeCAT1 is a negative regulator of CBB resistance. MeNR2 was localized in the nucleus, cell membrane and peroxisome, while MeCAT1 was localized in the peroxisomes. The interactions between MeNR2 and MeCAT1 also had effects of their respective enzyme activities. Taken together, the data presented here suggested that there is coordination between H2O2 and NO signaling in cassava disease resistance, through the interactions between MeCAT1 and MeNR2.

3.
Zhongguo Gu Shang ; 37(3): 271-7, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38515414

ABSTRACT

OBJECTIVE: To establish the finite element model of spinal canal reconstruction and internal fixation,analysis influence of spinal canal reconstruction and internal fixation on spinal stability,and verify the effectiveness and reliability of spinal canal reconstruction and internal fixation in spinal canal surgery. METHODS: A 30-year-old male healthy volunteer with a height of 172 cm and weight of 75 kg was selected and his lumbar CT data were collected to establish a finite element model of normal lumbar L3-L5,and the results were compared with in vitro solid results and published finite element analysis results to verify the validity of the model. They were divided into normal group,laminectomy group and spinal canal reconstruction group according to different treatment methods. Under the same boundary fixation and physiological load conditions,six kinds of activities were performed,including forward bending,backward extension,left bending,right bending,left rotation and right rotation,and the changes of range of motion (ROM) of L3-L4,L4-L5 segments and overall maximum ROM of L3-L5 were analyzed under the six conditions. RESULTS: The ROM displacement range of each segment of the constructed L3-L5 finite element model was consistent with the in vitro solid results and previous literature data,which confirms the validity of the model. In L3-L4,ROM of spinal canal reconstruction group was slightly increased than that of normal group during posterior extension(>5% difference),and ROM of other conditions was similar to that of normal group(<5% difference). ROM in laminectomy group was significantly increase than that in normal group and spinal canal reconstruction group under the condition of flexion,extension,left and right rotation. In L4-L5,ROM in spinal canal reconstruction group was similar to that in normal group(<5% difference),while ROM in laminectomy group was significantly higher than that in normal group and spinal canal reconstruction group(>5% difference). In the overall maximum ROM of L3-L5,spinal canal reconstruction group was only slightly higher than normal group under the condition of posterior extension(>5% difference),while laminectomy was significantly higher than normal group and spinal canal reconstruction group under the condition of anterior flexion,posterior extension,left and right rotation(>5% difference). The changes of each segment ROM and overall ROM of L3-L5 showed laminectomy group>spinal canal reconstruction group>normal group. CONCLUSION: Laminectomy could seriously affect biomechanical stability of the spine,but application of spinal canal reconstruction and internal fixation could effectively reduce ROM displacement of the responsible segment of spine and maintain its biomechanical stability.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Male , Humans , Adult , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Finite Element Analysis , Reproducibility of Results , Range of Motion, Articular/physiology , Biomechanical Phenomena , Spinal Canal/surgery
4.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37950877

ABSTRACT

Autism spectrum disorder (ASD) is characterized by etiological and phenotypic heterogeneity. Despite efforts to categorize ASD into subtypes, research on specific functional connectivity changes within ASD subgroups based on clinical presentations is limited. This study proposed a symptom-based clustering approach to identify subgroups of ASD based on multiple clinical rating scales and investigate their distinct Electroencephalogram (EEG) functional connectivity patterns. Eyes-opened resting-state EEG data were collected from 72 children with ASD and 63 typically developing (TD) children. A data-driven clustering approach based on Social Responsiveness Scales-Second Edition and Vinland-3 scores was used to identify subgroups. EEG functional connectivity and topological characteristics in four frequency bands were assessed. Two subgroups were identified: mild ASD (mASD, n = 37) and severe ASD (sASD, n = 35). Compared to TD, mASD showed increased functional connectivity in the beta band, while sASD exhibited decreased connectivity in the alpha band. Significant between-group differences in global and regional topological abnormalities were found in both alpha and beta bands. The proposed symptom-based clustering approach revealed the divergent functional connectivity patterns in the ASD subgroups that was not observed in typical ASD studies. Our study thus provides a new perspective to address the heterogeneity in ASD research.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/diagnostic imaging , Neural Pathways/diagnostic imaging , Electroencephalography , Cluster Analysis , Brain/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping
5.
Heliyon ; 9(8): e18957, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600408

ABSTRACT

Respiratory infections, whether chronic or acute, are frequent in both children and adults and result in an economic burden in health care systems. In particular, for an immunocompromised patient, respiratory infection leads to acute hypoxemic respiratory failure, a leading cause of intensive care unit (ICU) admission. Most respiratory infections are caused by bacteria, viruses, parasites, smoking, or air pollution. Over the last two decades, considerable improvements have been made in understanding and identifying respiratory infections. Various biosensing techniques have been developed with a range of targets to identify the infection at earlier stages. Recently, nanomaterials have been effectively applied to improve biosensors and their analytical performances. This review discusses recent biosensor developments for identifying respiratory infections caused by viruses and bacteria assisted by different types of nanomaterials and target molecules.

6.
BMC Musculoskelet Disord ; 24(1): 298, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37060044

ABSTRACT

OBJECTIVE: To evaluate the biomechanical effects of different miniplates on restorative laminoplasty. METHODS: Assembled restorative laminoplasty models were developed based on 3D printed L4 lamina. Based on different internal fixations, the research was divided into H-shaped miniplates (HSMs) group, two-hole miniplates (THMs) group, and L-shaped miniplates (LSMs) group. The static and dynamic compression tests were analyzed to investigate the biomechanical effects of different internal fixations in restorative laminoplasty, until the failure and fracture of miniplates, or the collapse of miniplates. The static compression tests adopted the speed control mode, and the dynamic fatigue compression tests adopted the load control mode. RESULTS: The "door close" and the collapse of lamina occurred in THMs group and LSMs group, and plate break occurred in LSMs group. However, these phenomenon was absent in HSMs group, and only plate crack around a screw and looseness of a screw tail cap were found in HSMs group. The sustainable yield load of HSMs group was greater than that of THMs group and LSMs group (P < 0.05). No significant difference in yielding-displacement was found between HSMs group and LSMs group (P > 0.05), while both were much less than that of THMs (P < 0.05). Moreover, the compressive stiffness and the axial displacement under the same mechanical load were arranged as follows: HSMs group > LSMs group > THMs group (P < 0.05). The results of dynamic compression test revealed that the peak load of HSMs group could reached 873 N and was 95% of the average yield load of the static compression, and was better than that in THMs group and LSMs group (P < 0.05). Besides, according to the fatigue life-peak load diagram, the ultimate load of HSMs group was more than twice that of THMs group or LSMs group. CONCLUSIONS: The mechanical strength of H-shaped miniplates was superior to two-hole miniplates and L-shaped miniplates in maintaining spinal canal enlargement and spinal stability, and was more excellent in fatigue stability and ultimate load.


Subject(s)
Laminoplasty , Humans , Laminoplasty/methods , Bone Screws , Bone Plates , Spine , Fracture Fixation, Internal , Biomechanical Phenomena
7.
J Pineal Res ; 74(3): e12861, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36750349

ABSTRACT

Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.


Subject(s)
Manihot , Melatonin , Melatonin/metabolism , Histones/genetics , Histones/metabolism , Manihot/genetics , Manihot/metabolism , Disease Resistance/genetics , Epigenesis, Genetic , Plants/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Gene Expression Regulation, Plant
8.
Plant J ; 112(5): 1212-1223, 2022 12.
Article in English | MEDLINE | ID: mdl-36239073

ABSTRACT

As one of the most important food crops, cassava (Manihot esculenta) is the main dietary source of micronutrients for about 1 billion people. However, the ionomic variation in cassava and the underlying genetic mechanisms remain unclear so far. Herein, genome-wide association studies were performed to reveal the specific single nucleotide polymorphisms (SNPs) that affect the ionomic variation in cassava. We identified 164 SNPs with P-values lower than the threshold located in 88 loci associated with divergent ionomic variations. Among them, 13 SNPs are related to both calcium (Ca) and magnesium (Mg), and many loci for different ionomic traits seem to be clustered on specific chromosome regions. Moreover, we identified the peak SNPs in the promoter regions of Sc10g003170 (encoding methionyl-tRNA synthetase [MetRS]) and Sc18g015190 (encoding the transcriptional regulatory protein AlgP) for nitrogen (N) and phosphorus (P) accumulation, respectively. Notably, these two SNPs (chr10_32807962 and chr18_31343738) were directly correlated with the transcript levels of Sc10g003170 (MetRS) and Sc18g015190 (AlgP), which positively modulated N accumulation and P concentration in cassava, respectively. Taken together, this study provides important insight into the genetic basis of cassava natural ionomic variation, which will promote genetic breeding to improve nutrient use and accumulation of elements in cassava.


Subject(s)
Manihot , Manihot/genetics , Manihot/metabolism , Genome-Wide Association Study , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Genetic Variation
9.
Front Plant Sci ; 13: 938262, 2022.
Article in English | MEDLINE | ID: mdl-36147243

ABSTRACT

Soil salinization poses a serious threat to the ecological environment and agricultural production and is one of the most common abiotic stresses in global agricultural production. As a salt-sensitive plant, the growth, development, and production of bananas (Musa acuminata L.) are restricted by salt stress. Melatonin is known to improve the resistance of plants to stress. The study analyzed the effects of 100 µM melatonin on physiological and transcriptome changes in banana varieties (AAA group cv. Cavendish) under 60 mmol/l of NaCl salt stress situation. The phenotypic results showed that the application of exogenous melatonin could maintain banana plants' health growth and alleviate the damage caused by salt stress. The physiological data show that the application of exogenous melatonin can enhance salt tolerance of banana seedlings by increasing the content of proline content and soluble protein, slowing down the degradation of chlorophyll, reducing membrane permeability and recovery of relative water content, increasing the accumulation of MDA, and enhancing antioxidant defense activity. Transcriptome sequencing showed that melatonin-induced salt tolerance of banana seedlings involved biological processes, molecular functions, and cellular components. We also found that differentially expressed genes (DEGs) are involved in a variety of metabolic pathways, including amino sugar and nucleotide sugar metabolism, phenylalanine metabolism, cyanoamino acid metabolism, starch and sucrose metabolism, and linoleic acid metabolism. These major metabolism and biosynthesis may be involved in the potential mechanism of melatonin under salt stress. Furthermore, some members of the transcription factor family, such as MYB, NAC, bHLH, and WRKY, might contribute to melatonin alleviating salt stress tolerance of the banana plant. The result laid a basis for further clarifying the salt stress resistance mechanism of bananas mediated by exogenous melatonin and provides theoretical bases to utilize melatonin to improve banana salt tolerance in the future.

10.
Plant Cell Rep ; 41(5): 1261-1272, 2022 May.
Article in English | MEDLINE | ID: mdl-35275280

ABSTRACT

KEY MESSAGE: MeRAVs positively regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam. Cassava (Manihot esculenta Crantz) is an important food crop and energy crop, but its yield is seriously affected by cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam). Related to ABI3/VP1 (RAV) transcription factor family belongs to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, which plays an important role in plant growth, development and response to biotic and abiotic stresses. In this study, we found that MeRAVs positively co-regulates the resistance to Xam and stimulates the innate immune response by regulating reactive oxygen species (ROS) burst in cassava. Dual-luciferase assay showed that seven MeRAVs exhibited transcriptional activate activity by binding CAACA motif and CACCTG motif. A large number of differentially expressed genes (DEGs) were identified through RNA-seq analysis of MeRAVs-silenced lines, and the DEGs co-regulated by seven MeRAVs accounted for more than 45% of the total DEGs. In addition, seven MeRAVs positively regulate expression of disease resistance-related genes through directly binding to their promoters. In summary, MeRAVs co-regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam.


Subject(s)
Manihot , Xanthomonas axonopodis , Xanthomonas , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Reactive Oxygen Species , Transcription Factors/genetics , Transcription Factors/metabolism , Xanthomonas axonopodis/physiology
11.
Plant Physiol Biochem ; 171: 66-74, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34971956

ABSTRACT

The phyllosphere is one of the most abundant habitats for global microbiota. The ionome is the composition of mineral elements in plants. The correlation between phyllosphere microbiota and the ionome remains elusive in plants, especially in the most important tropical crop cassava. In this study, microbiome-wide association studies (MWASs) of thirty varieties were performed to reveal the association between phyllosphere microbiota and ionomic variations in cassava. Annotation of metagenomic species identified some species that were significantly correlated with ionomic variations in cassava. Among them, Lactococcus lactis abundance was negatively associated with leaf aluminium (Al) levels but positively related to leaf potassium (K) levels. Notably, both the reference and isolated L. lactis showed strong binding capacity to Al. Further bacterial transplantation of isolated L. lactis could significantly decrease endogenous Al levels but increase K levels in cassava, and it can also lead to increased citric acid and lactic acid levels as well as higher transcript levels of K uptake-related genes. Taken together, this study reveals the involvement of phyllosphere microbiota in ionomic variation in cassava, and the correlation between L. lactis abundance and Al and K levels provides novel insights into alleviating Al accumulation and promoting K uptake simultaneously.


Subject(s)
Lactococcus lactis , Manihot , Microbiota , Aluminum , Manihot/genetics , Symbiosis
12.
Plant Physiol Biochem ; 167: 430-437, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411782

ABSTRACT

Cassava is a food crop and an important energy crop worldwide. However, its yield and quality are easily affected by low K+ stress, and the molecular mechanism of potassium channel is unknown in cassava. Herein, we revealed that calcineurin B-like 1/9 (MeCBL1/9)-CBL-interacting protein kinase 23 (MeCIPK23)-K+ TRANSPORTER1 (MeAKT1) complex plays an important role in low potassium response in cassava. Firstly, this study verified the in vivo role of MeAKT1 in K+ uptake in yeast. Secondly, we found that MeCBL1, MeCBL9, MeCIPK23 and MeAKT1 are involved in the absorption of K+ in cassava, and MeCBL1/9-CIPK23 complex is essential for MeAKT1-mediated K+ uptake. Moreover, MeCBL1/9-MeCIPK23-MeAKT1 showed different expression in different cassava varieties contrasting in the resistance to low K+ stress. Taken together, this study provides new insights into further improvement of K+ uptake in cassava.


Subject(s)
Manihot , Plant Proteins/metabolism , Potassium , Calcium-Binding Proteins/metabolism , Manihot/genetics , Manihot/metabolism , Potassium/metabolism , Potassium Channels/metabolism , Protein Serine-Threonine Kinases/metabolism
13.
Plant J ; 107(3): 847-860, 2021 08.
Article in English | MEDLINE | ID: mdl-34022096

ABSTRACT

Cassava, an important food and energy crop, is relatively more resistant to drought stress than other crops. However, the molecular mechanism underlying this resistance remains elusive. Herein, we report that silencing a drought stress-responsive transcription factor MeRAV5 significantly reduced drought stress resistance, with higher levels of hydrogen peroxide (H2 O2 ) and less lignin during drought stress. Yeast two-hybrid, pull down and bimolecular fluorescence complementation (BiFC) showed that MeRAV5 physically interacted with peroxidase (MePOD) and lignin-related cinnamyl alcohol dehydrogenase 15 (MeCAD15) in vitro and in vivo. MeRAV5 promoted the activities of both MePOD and MeCAD15 to affect H2 O2 and endogenous lignin accumulation respectively, which are important in drought stress resistance in cassava. When either MeCAD15 or MeRAV5 was silenced, or both were co-silenced, cassava showed lower lignin content and drought-sensitive phenotype, whereas exogenous lignin alkali treatment increased drought stress resistance and alleviated the drought-sensitive phenotype of these silenced cassava plants. This study documents that the modulation of H2 O2 and lignin by MeRAV5 is essential for drought stress resistance in cassava.


Subject(s)
Droughts , Gene Expression Regulation, Plant/physiology , Lignin/metabolism , Manihot/metabolism , Plant Proteins/metabolism , Gene Silencing , Hydrogen Peroxide , Manihot/drug effects , Plant Proteins/genetics , Water/metabolism
14.
J Hazard Mater ; 411: 125143, 2021 06 05.
Article in English | MEDLINE | ID: mdl-33858103

ABSTRACT

The most common environmental pollutants such as cadmium (Cd), glyphosate and tetracycline have led to profoundly adverse impacts on plant productivity. However, how tropical crops such as cassava sense these pollutants via roots and how rhizosphere microbiome interacts with the host and pollutants remain largely unknown. In this study, we found these stresses significantly inhibited plant growth and triggered cell damage in a dosage-dependent manner, and the toxic effect on redox homeostasis was correlated with antioxidant metabolism. Using metagenomics technique, we found the rhizosphere microbiomes dynamically altered as the dose of these stresses increased. We also identified stressor-associated metagenome-assembled genomes and microbial metabolic pathways as well as mobile genetic elements in the rhizosphere microbiomes. Next, a co-occurrence network of both physiological and microbiome features was constructed to explore how these pollutants derived oxidative damage through the microbiome succession. Notably, phyllosphere transplantation of Agrobacterium tumefaciens or Pseudomonas stutzeri can significantly alleviate the negative effects of stresses on cassava growth and redox homeostasis. Collectively, this study demonstrated the dynamics of rhizosphere bacterial microbiome of cassava under three common environmental stresses, and A. tumefaciens and P. stutzeri could be developed as potential beneficial bacteria to alleviate Cd, glyphosate and tetracycline-triggered damage to cassava.


Subject(s)
Manihot , Microbiota , Bacteria/genetics , Metagenome , Metagenomics , Microbiota/genetics , Plant Roots , Rhizosphere , Soil Microbiology
15.
Plant Biotechnol J ; 19(4): 689-701, 2021 04.
Article in English | MEDLINE | ID: mdl-33095967

ABSTRACT

Cassava is one of the most important staple food crops in tropical regions. To date, an understanding of the relationship between microbial communities and disease resistance in cassava has remained elusive. In order to explore the relationship among microbiome and phenotypes for further targeted design of microbial community, 16S rRNA and ITS of microbiome of ten cassava varieties were analysed, and a distinctive microbial community in the rhizosphere showed significant interdependence with disease resistance. Shotgun metagenome sequencing was performed to elucidate the structure of microbiomes of cassava rhizosphere. Comprehensive microbiome studies were performed to assess the correlation between the rhizosphere microbiome and disease resistance. Subsequently, the metagenome of rhizosphere microbiome was annotated to obtain taxonomic information at species level and identify metabolic pathways that were significantly associated with cassava disease resistance. Notably, cassava disease resistance was significantly associated with Lactococcus sp., which specifically produces nisin. To definitively explain the role of nisin and underlying mechanism, analysis of nisin biosynthesis-associated genes together with in vitro and in vivo experiments highlighted the effect of nisin on inhibiting the growth of Xanthomonas axonopodis pv. manihotis (Xam) and activating immune response in cassava. The new insights between cassava rhizosphere microbiome especially Lactococcus sp. and disease resistance provide valuable information into further control of cassava disease.


Subject(s)
Manihot , Microbiota , Xanthomonas axonopodis , Disease Resistance/genetics , Humans , Manihot/genetics , Plant Diseases , RNA, Ribosomal, 16S/genetics , Rhizosphere , Xanthomonas axonopodis/genetics
16.
Plant Biotechnol J ; 19(4): 785-800, 2021 04.
Article in English | MEDLINE | ID: mdl-33128298

ABSTRACT

Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Nitrate reductase (NR) plays an important role in plant nitrogen metabolism in plants. However, the in vivo role of NR and the corresponding signalling pathway remain unclear in cassava. In this study, we isolated MeNR1/2 and revealed their novel upstream transcription factor MeRAV5. We also identified MeCatalase1 (MeCAT1) as the interacting protein of MeRAV5. In addition, we investigated the role of MeCatalase1 and MeRAV5-MeNR1/2 module in cassava defence response. MeNRs positively regulates cassava disease resistance against CBB through modulation of nitric oxide (NO) and extensive transcriptional reprogramming especially in mitogen-activated protein kinase (MAPK) signalling. Notably, MeRAV5 positively regulates cassava disease resistance through the coordination of NO and hydrogen peroxide (H2 O2 ) level. On the one hand, MeRAV5 directly activates the transcripts of MeNRs and NO level by binding to CAACA motif in the promoters of MeNRs. On the other hand, MeRAV5 interacts with MeCAT1 to inhibit its activity, so as to negatively regulate endogenous H2 O2 level. This study highlights the precise coordination of NR activity and CAT activity by MeRAV5 through directly activating MeNRs and interacting with MeCAT1 in plant immunity.


Subject(s)
Manihot , Xanthomonas axonopodis , Catalase , Disease Resistance/genetics , Manihot/genetics , Nitrate Reductases , Plant Diseases
17.
Zhongguo Gu Shang ; 33(12): 1148-56, 2020 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-33369323

ABSTRACT

OBJECTIVE: To analyze the role of endoplasmic reticulum stress response in the development of osteoblast apoptosis and osteolysis in osteolytic bone tissue, and to explore the causes of artificial joint loosening, so as to provide new ideas and theoretical basis for the prevention and treatment of artificial joint loosening. METHODS: The animal model of osteolysis induced by wear particles was established by mouse skull, and randomly divided into 4 groups, 7 rats in each group:group 1, blank control group;group 2, wear particles tial6v4 nano alloy powder (TiNPs) group;group 3, endoplasmic reticulum stress response positive control (TiNPs+Tg) group; group 4, endoplasmic reticulum stress response inhibitor (TiNPs+4-PBA) group. The pathological changes of osteolysis were observed by toluidine blue staining, HE staining and ALP staining;the expression of endoplasmic reticulum stress response marker protein was detected by Western Blotting;the apoptosis of osteoblasts in osteolytic skull tissue was detected by TUNEL and Caspase-3 immunohistochemistry. RESULTS: Wear particles TiNPs can induce osteolysis in vitro, aggravate the infiltration of inflammatory cells and inhibit the differentiation and maturation of osteoblasts. At the same time, wear particles can also up regulate the markers of endoplasmic reticulum stress response and promote the apoptosis of osteoblasts in osteolytic bone tissue. After adding 4-PBA, an inhibitor of endoplasmic reticulum stress (4-PBA), on the basis of wear particles TiNPs, the symptoms of osteolysis were significantly relieved, bone erosion and inflammatory infiltration were significantly reduced, the differentiation and maturation of osteoblasts were improved, the number of apoptotic osteoblasts decreased sharply, and the expression of endoplasmic reticulum stress marker protein gradually decreased. CONCLUSION: Endoplasmic reticulum stress is involved in the formation of osteolysis and plays an important role in the occurrence and development of osteolysis. At the same time, endoplasmic reticulum stress can be used as a new therapeutic target to provide new ideas and methods for clinical reversal or treatment of osteolysis and aseptic loosening.


Subject(s)
Osteolysis , Animals , Apoptosis , Cell Differentiation , Endoplasmic Reticulum Stress , Mice , Osteoblasts , Osteolysis/chemically induced , Rats
18.
Food Funct ; 11(10): 8788-8799, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32955540

ABSTRACT

Arecoline is one of the main medicinal constituents in areca. Melatonin is an amine molecule with multiple functions in plants and animals. However, the interaction between arecoline and melatonin remains unknown. Herein, metabolomics analysis showed that multiple metabolites including arecoline were induced in areca by exogenous melatonin. In vitro assay demonstrated that the induced arecoline had strong antioxidant capacities, being similar to the traditional function of melatonin. Both arecoline and melatonin could significantly improve plant disease resistance against Colletotrichum kahawae and delay post-harvest physiological deterioration (PPD) of areca fruits, through modulation of the levels of jasmonic acid (JA), salicylic acid (SA), ethylene (ETH) and abscisic acid (ABA), reactive oxygen species (ROS) level as well as glycolytic activity. In addition, animal and cell assays indicated that arecoline and melatonin could commonly enhance anti-inflammatory effects through regulating ROS and hypoxia inducible factor-1α (HIF-1α). Taken together, melatonin could serve as an inducer of arecoline and they show coordinated roles in antioxidative activity and immune responses in areca and animals. This study greatly extends the knowledge of the action of melatonin in areca and animals.


Subject(s)
Antioxidants/pharmacology , Arecoline/pharmacology , Immunity/drug effects , Melatonin/pharmacology , Animals , Areca/immunology , Areca/metabolism , Humans , Reactive Oxygen Species/metabolism
19.
Plant Physiol Biochem ; 156: 155-166, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32949935

ABSTRACT

WRKY transcription factors play key roles in plant biotic and abiotic stress responses, but the function of some MaWRKYs remains elusive. Here, we characterized the positive role of MaWRKY80 in drought stress resistance and the underlying mechanism. MaWRKY80 was significantly upregulated under drought stress and confirmed as a transcription factor that could bind to the W-box. Overexpression of MaWRKY80 in Arabidopsis showed better phenotypic morphology, higher survival rate, less water loss rate, and lower malondialdehyde level than wild type (WT) under drought stress. Consistently, MaWRKY80 transgenic Arabidopsis leaves displayed significantly lower reactive oxygen species (ROS) than WT under drought stress. Moreover, MaWRKY80 mediated the stomata movement and leaf water retention capacity through modulation of the transcript of 9-cis-epoxycarotenoid dioxygenases (NCEDs) and abscisic acid (ABA) biosynthesis in Arabidopsis. Notably, chromatin immunoprecipitation quantitative real-time PCR (ChIP-PCR) and electrophoretic mobility shift assay (EMSA) provided evidences supporting the direct and specific interaction between MaWRKY80 and both the W-box in AtNCEDs promoter in Arabidopsis and the W-box in MaNCEDs promoter in banana. Taken together, MaWRKY80 serves as a positive regulator of drought stress resistance through modulating ABA level by regulating NCEDs expression and ROS accumulation by regulating antioxidant system. This study provides a novel insight into MaWRKY80 in coordinating ABA synthesis and ROS elimination in response to drought stress.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/physiology , Droughts , Musa/genetics , Plant Proteins/physiology , Stress, Physiological , Arabidopsis/genetics , Gene Expression Regulation, Plant , Oxidation-Reduction , Plant Proteins/genetics , Plants, Genetically Modified/physiology
20.
Ann Bot ; 124(7): 1185-1198, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31282544

ABSTRACT

BACKGROUND AND AIMS: The nuclear factor Y (NF-Y) transcription factor complex is important in plant growth, development and stress response. Information regarding this transcription factor complex is limited in cassava (Manihot esculenta). In this study, 15 MeNF-YAs, 21 MeNF-YBs and 15 MeNF-YCs were comprehensively characterized during plant defence. METHODS: Gene expression in MeNF-Ys was examined during interaction with the bacterial pathogen Xanthomonas axonopodis pv. manihotis (Xam). The yeast two-hybrid system was employed to investigate protein-protein interactions in the heterotrimeric NF-Y transcription factor complex. The in vivo roles of MeNF-Ys were revealed by virus-induced gene silencing (VIGS) in cassava. KEY RESULTS: The regulation of MeNF-Ys in response to Xam indicated their possible roles in response to cassava bacterial blight. Protein-protein interaction assays identified the heterotrimeric NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12). Moreover, the members of the heterotrimeric NF-Y transcription factor complex were located in the cell nucleus and conferred transcriptional activation activity to the CCAAT motif. Notably, the heterotrimeric NF-Y transcription factor complex positively regulated plant disease resistance to Xam, confirmed by a disease phenotype in overexpressing plants in Nicotiana benthamiana and VIGS in cassava. Consistently, the heterotrimeric NF-Y transcription factor complex positively regulated the expression of pathogenesis-related genes (MePRs). CONCLUSIONS: The NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12) characterized here was shown to play a role in transcriptional activation of MePR promoters, contributing to the plant defence response in cassava.


Subject(s)
Manihot , Xanthomonas axonopodis , CCAAT-Binding Factor , Disease Resistance , Humans , Plant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...