Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Eur J Dent Educ ; 28(2): 621-630, 2024 May.
Article in English | MEDLINE | ID: mdl-38234068

ABSTRACT

INTRODUCTION: To summarize the development of Innovative Undergraduate Dental Talents Training Project (IUDTTP) and investigate the training effect of this extracurricular dental basic research education activity from 2015 to 2020 to obtain educational implications. MATERIALS AND METHODS: The Guanghua School of Stomatology established the IUDTTP in 2015. The authors recorded the development process and analysed the participation situation, training effect, academic performance and overall satisfaction during 2015-2020 through documental analysis, questionnaire and quiz. The t-test, chi-square test and ANOVA were used to test the difference. RESULTS: The educational goal, education module and assessment system of IUDTTP evolved and developed every year. A total of 336 students and 79 mentors attended the IUDTTP from 2015 to 2020, with the participation rate increasing from 45.1% to 73.5%. The participants exhibited favourable basic research abilities, manifesting as the increase of funded projects and published papers and satisfying quiz scores. Almost all students (94.94%) admitted their satisfaction with the IUDTTP. Moreover, the attended students surpassed the non-participants in terms of GPA, the number of acquired scholarships and outstanding graduates (p < .05). Likewise, the enrolment rate of postgraduate participants was significantly higher than non-participants. CONCLUSIONS: To date, the training effect indicated that the IUDTTP has fulfilled the education aim. It brought positive effects on promoting research interest, cultivating research capacities and enhancing academic performance. The potential deficiencies of extracurricular educational activities, including inflexibility in schedule and insufficiency in systematisms, may be remedied by more systematic educational settings in the future.


Subject(s)
Education, Dental , Students , Humans , Retrospective Studies , Motivation
2.
Nano Lett ; 24(1): 511-518, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38147442

ABSTRACT

Inversion symmetry breaking has played an important role in recent discoveries of nonreciprocal charge transport. Niobium diselenide, for example, lacks an inversion center in the monolayer form and can host prominent nonreciprocal transport property. Here, however, we observe a nonreciprocal transport signal in the second-harmonic channel of bulk-like NbSe2, in which inversion symmetry of the lattice seems preserved. The second-harmonic signal occurs along different in-plane current orientations and appears not only in the vortex-liquid regime but also even in the superconducting fluctuation regime without an applied magnetic field. By adding a direct current (DC) bias, we quantify the symmetry breaking effect in the vortex-liquid regime. The DC bias also suggests that the rectification effect at the contacts may account for the seemingly nonreciprocal transport at zero magnetic field. Our results demonstrate that DC biasing is a useful knob for addressing nonreciprocal charge transport in a wide range of materials.

3.
Natl Sci Rev ; 10(11): nwad112, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37818115

ABSTRACT

The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidence for the dominant role of Kondo scattering in the underdoped Nd1-xSrxNiO2 thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal and Hall resistivities are observed in the underdoped Nd1-xSrxNiO2 samples before the superconducting transition. At lower temperatures down to 0.04 K, the resistivities become saturated, following the prediction of the Kondo model. A linear scaling behavior [Formula: see text] between anomalous Hall conductivity [Formula: see text] and conductivity [Formula: see text]is revealed, verifying the dominant Kondo scattering at low temperature. The effect of weak (anti-)localization is found to be secondary. Our experiments can help in clarifying the basic physics in the underdoped Nd1-xSrxNiO2 infinite-layer thin films.

4.
ACS Appl Mater Interfaces ; 15(39): 46550-46558, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37734037

ABSTRACT

Graphene-based flexible electronic devices are widely used in photoelectric components and photodetectors. However, it remains a huge challenge to fabricate graphene-based flexible devices efficiently and economically. Compared with the flexible electronic devices made by combining the flexible film with metal and semiconductor materials, the graphene-based flexible substrate (GFS) can be efficiently and conveniently induced by laser direct writing on the flexible film. In this paper, the GFS with a resistance of as low as 15 Ω was successfully induced by CO2 laser on a polyimide (PI) film in one step, and the GFS surface covered with carbon nanoparticles (GFSC) with a resistance of 25 Ω was further induced by femtosecond (fs) laser reprocessing. Benefiting from the laser-induced porous graphene structure, the absorptivity of GFS is up to 90% in the wavelength range of 200-2000 nm. The formation of carbon nanoparticles on the GFSC surface further improves the absorptivity to 97.5% in a wide spectral range. Under white light irradiation of 1 sun, the surface temperature of GFS reaches 65.7 °C and that of GFSC is up to 70.8 °C within 2 min. Under the irradiation of a light-emitting diode (LED) with a central wavelength of 365 nm, the highest photoresponsivity of GFS and GFSC was 8.8 and 1.3 mA/W, respectively. The response time and recovery time of GFS are 8 and 7.3 s, and those of GFSC are 8.3 and 6.7 s, respectively. Importantly, GFSC has a more stable photoresponse performance due to the better electron capture and transfer capability of carbon nanoparticles. It is believed that GFS and GFSC have great application potential in flexible photodetectors and sensors.

5.
J Stomatol Oral Maxillofac Surg ; 124(6S): 101634, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37709143

ABSTRACT

BACKGROUND: Apical palatal bone is important in immediate implant evaluation. Current consensus gives qualitative suggestions regarding it, limiting its clinical decision-making value. OBJECTIVES: To quantify the apical palatal bone dimension in maxillary incisors and reveal its quantitative correlation with other implant-related hard tissue indices to give practical advice for pre-immediate implant evaluation and design. MATERIAL AND METHODS: A retrospective analysis of immediate implant-related hard tissue indices in maxillary incisors obtained by cone beam computed tomography (CBCT) was conducted. Palatal bone thickness at the apex level (Apical-P) on the sagittal section was selected as a parameter reflecting the apical palatal bone. Its quantitative correlation with other immediate implant-related hard tissue indices was revealed. Clinical advice of pre-immediate implant assessment was given based on the quantitative classification of Apical-P and its other correlated immediate implant-related hard tissue indices. RESULTS: Apical-P positively correlated with cervical palatal bone, whole cervical buccal-palatal bone, sagittal root angle, and basal bone width indices. while negatively correlated with apical buccal bone, cervical buccal bone, and basal bone length indices. Six quantitative categories of Apical-P are proposed. Cases with Apical-P below 4 mm had an insufficient apical bone thickness to accommodate the implant placement, while Apical-P beyond 12 mm should be cautious about the severe implant inclination. Cases with Apical-P of 4-12 mm can generally achieve satisfying immediate implant outcomes via regulating the implant inclination. CONCLUSIONS: Quantification of the apical palatal bone index for maxillary incisor immediate implant assessment can be achieved, providing a quantitative guide for immediate implant placement in the maxillary incisor zone.


Subject(s)
Alveolar Process , Incisor , Humans , Incisor/diagnostic imaging , Incisor/surgery , Cross-Sectional Studies , Alveolar Process/diagnostic imaging , Alveolar Process/surgery , Retrospective Studies , Palate , Maxilla/diagnostic imaging , Maxilla/surgery
6.
Natl Sci Rev ; 10(9): nwad025, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37565212

ABSTRACT

Fractional quantization can emerge in noncorrelated systems due to the parity anomaly, while its condensed matter realization is a challenging problem. We propose that in axion insulators (AIs), parity anomaly manifests a unique fractional boundary excitation: the half-quantized helical hinge currents. These helical hinge currents microscopically originate from the lateral Goos-Hänchen (GH) shift of massless side-surface Dirac electrons that are totally reflected from the hinges. Meanwhile, due to the presence of the massive top and bottom surfaces of the AI, the helical current induced by the GH shift is half-quantized. The semiclassical wave packet analysis uncovers that the hinge current has a topological origin and its half quantization is robust to parameter variations. Lastly, we propose an experimentally feasible six-terminal device to identify the half-quantized hinge channels by measuring the nonreciprocal conductances. Our results advance the realization of the half-quantization and topological magnetoelectric responses in AIs.

7.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37504503

ABSTRACT

A high gain and high aperture efficiency metamaterial (MTM) antenna is applied to a solar telescope in this paper. First, a portable solar telescope including the MTM antenna and a receiving system is presented. Next, the theory of the MTM antenna is proposed and analyzed based on the ray-tracing model. The designed MTM antenna is composed of a dual circularly polarized Fabry-Pérot resonant antenna (FPRA) and four phase correction metasurfaces (PCMs). The proposed PCMs act as the reflection surface and the phase correction surface at the same time. Every PCM consists of 2 × 18 optimized artificial magnetic conductor (AMC) units. To solve the parallel incidence and narrow bandwidth problems of AMC units, a nonuniform partially reflective surface is designed. Compared with traditional FPRA, the proposed MTM antenna has an increase in peak gain of 37.5% and an aperture efficiency of 11.4%. Then, a receiving system composed of the receiver, equatorial mount, data acquisition module, and display module is presented for solar radio signal processing. Finally, the designed MTM antenna and solar telescope are simulated and measured. A good agreement between the simulation and measurement is observed and can be used to verify this design.

8.
Front Genet ; 14: 1177259, 2023.
Article in English | MEDLINE | ID: mdl-37260771

ABSTRACT

Background: Long non-coding RNAs (lncRNAs), which are generally less functionally characterized or less annotated, evolve more rapidly than mRNAs and substantially possess fewer sequence conservation patterns than protein-coding genes across divergent species. People assume that the functional inference could be conducted on the evolutionarily conserved long non-coding RNAs as they are most likely to be functional. In the past decades, substantial progress has been made in discussions on the evolutionary conservation of non-coding genomic regions from multiple perspectives. However, understanding their conservation and the functions associated with sequence conservation in relation to further corresponding phenotypic variability or disorders still remains incomplete. Results: Accordingly, we determined a highly conserved region (HCR) to verify the sequence conservation among long non-coding RNAs and systematically profiled homologous long non-coding RNA clusters in humans and mice based on the detection of highly conserved regions. Moreover, according to homolog clustering, we explored the potential function inference via highly conserved regions on representative long non-coding RNAs. On lncRNA XACT, we investigated the potential functional competence between XACT and lncRNA XIST by recruiting miRNA-29a, regulating the downstream target genes. In addition, on lncRNA LINC00461, we examined the interaction relationship between LINC00461 and SND1. This interaction or association may be perturbed during the progression of glioma. In addition, we have constructed a website with user-friendly web interfaces for searching, analyzing, and downloading to present the homologous clusters of humans and mice. Conclusion: Collectively, homolog clustering via the highly conserved region definition and detection on long non-coding RNAs, as well as the functional explorations on representative sequences in our research, would provide new evidence for the potential function of long non-coding RNAs. Our results on the remarkable roles of long non-coding RNAs would presumably provide a new theoretical basis and candidate diagnostic indicators for tumors.

9.
Nano Lett ; 23(12): 5634-5640, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37318449

ABSTRACT

Time-reversal invariance (TRS) and inversion symmetry (IS) are responsible for the topological band structure in Dirac semimetals (DSMs). These symmetries can be broken by applying an external magnetic or electric field, resulting in fundamental changes to the ground state Hamiltonian and a topological phase transition. We probe these changes using universal conductance fluctuations (UCF) in the prototypical DSM, Cd3As2. With increasing magnetic field, the magnitude of the UCF decreases by a factor of 2, in agreement with numerical calculations of the effect of broken TRS. In contrast, the magnitude of the UCF increases monotonically when the chemical potential is gated away from the charge neutrality point. We attribute this to Fermi surface anisotropy rather than broken IS. The concurrence between experimental data and theory provides unequivocal evidence that UCF are the dominant source of fluctuations and offers a general methodology for probing broken-symmetry effects in topological quantum materials.

10.
J Phys Condens Matter ; 35(32)2023 May 11.
Article in English | MEDLINE | ID: mdl-37141897

ABSTRACT

We theoretically study the impurity effects on the zeroth pseudo-Landau level (PLL) representation of the flat band in a twisted bilayer graphene (TBG) system. Our research investigates the impact of both short-range and long-range charged impurities on the PLL using the self-consistent Born approximation and random phase approximation. Our findings indicate that short-range impurities have a significant effect on the broadening of the flat band due to impurity scattering. In contrast, the impact of long-range charged impurities on the broadening of the flat band is relatively weak, and the primary impact of the Coulomb interaction is the splitting of the PLL degeneracy when a certain purity condition is satisfied. As a result, spontaneous ferromagnetic flat bands with nonzero Chern numbers emerge. Our work sheds light on the effect of impurities on the quantum Hall plateau transition in TBG systems.

11.
Bioact Mater ; 28: 95-111, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37250862

ABSTRACT

With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterials. Decellularized extracellular matrix (dECM) has been extensively used in the clinical treatment of tissue injury due to its favorable biocompatibility and similarity to the native tissue environment. However, most reported decellularization protocols may cause damage to the native structure of dECM, which undermines its inherent advantages and potential clinical applications. Here, we introduce a mechanically tunable dECM prepared by optimizing the freeze-thaw cycles. We demonstrated that the alteration in micromechanical properties of dECM resulting from the cyclic freeze-thaw process contributes to distinct macrophage-mediated host immune responses to the materials, which are recently recognized to play a pivotal role in determining the outcome of tissue regeneration. Our sequencing data further revealed that the immunomodulatory effect of dECM was induced via the mechnotrasduction pathways in macrophages. Next, we tested the dECM in a rat skin injury model and found an enhanced micromechanical property of dECM achieved with three freeze-thaw cycles significantly promoted the M2 polarization of macrophages, leading to superior wound healing. These findings suggest that the immunomodulatory property of dECM can be efficiently manipulated by tailoring its inherent micromechanical properties during the decellularization process. Therefore, our mechanics-immunomodulation-based strategy provides new insights into the development of advanced biomaterials for wound healing.

12.
Natl Sci Rev ; 10(3): nwac210, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37035021

ABSTRACT

Correlated states have emerged in low-dimensional systems owing to enhanced Coulomb interactions. Elucidating these states requires atomic-scale characterization and delicate control capabilities. Herein, spectroscopic imaging-scanning tunneling microscopy was employed to investigate the correlated states residing in 1D electrons of the monolayer and bilayer MoSe2 mirror twin boundary (MTB). The Coulomb energies, determined by the wire length, drive the MTB into two types of ground states with distinct respective out-of-phase and in-phase charge orders. The two ground states can be reversibly converted through a metastable zero-energy state with in situ voltage pulses, which tune the electron filling of the MTB via a polaronic process, substantiated by first-principles calculations. Our Hubbard model calculation with an exact diagonalization method reveals the ground states as correlated insulators from an on-site U-originated Coulomb interaction, dubbed the Hubbard-type Coulomb blockade effect. Our study lays a foundation for understanding and tailoring correlated physics in complex systems.

13.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837084

ABSTRACT

The surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) can be used to enhance the generation of the hot electrons in plasmon metal nanocavity. In this paper, Pd nanomembrane (NMB) is sputtered on the surface of Si nanosphere (NS) on glass substrate to form the Si@Pd core-Ω shell nanocavity. A plasmon-Mie resonance is induced in the nanocavity by coupling the plasmon resonance with the Mie resonance to control the optical property of Si NS. When this nanocavity is excited by near-infrared-1 (NIR-1, 650 nm-900 nm) femtosecond (fs) laser, the luminescence intensity of Si NS is dramatically enhanced due to the synergistic interaction of plasmon and Mie resonance. The generation of resonance coupling regulates resonant mode of the nanocavity to realize multi-dimensional nonlinear optical response, which can be utilized in the fields of biological imaging and nanoscale light source.

14.
Nanomaterials (Basel) ; 13(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36770423

ABSTRACT

Realizing strong laser-matter interaction in a heterostructure consisting of two-dimensional transition metal dichalcogenides (TMDCs) and an optical nanocavity is a potential strategy for novel photonic devices. In this paper, two core-Ω shell nanostructures, Si@WS2 core-Ω shell nanostructure on glass/Si substrates, are briefly introduced. A strong laser-matter interaction occurred in the Si@WS2 core-Ω shell nanostructure when it was excited by femtosecond (fs) laser in the near-infrared-1 region (NIR-1, 650 nm-950 nm), resulting in a resonance coupling between the electric dipole resonance (EDR) of the Si nanosphere (NS) and the exciton resonance of the WS2 nanomembrane (NMB). The generation of resonance coupling regulates the resonant mode of the nanostructure to realize the multi-dimensional nonlinear optical response, which can be utilized in the fields of biological imaging and nanoscale light source.

15.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36770494

ABSTRACT

Metasurfaces have shown their great capability to manipulate electromagnetic waves. As a new concept, reconfigurable metasurfaces attract researchers' attention. There are many kinds of reconfigurable components, devices and materials that can be loaded on metasurfaces. When cooperating with reconfigurable structures, dynamic control of the responses of metasurfaces are realized under external excitations, offering new opportunities to manipulate electromagnetic waves dynamically. This review introduces some common methods to design reconfigurable metasurfaces classified by the techniques they use, such as special materials, semiconductor components and mechanical devices. Specifically, this review provides a comparison among all the methods mentioned and discusses their pros and cons. Finally, based on the unsolved problems in the designs and applications, the challenges and possible developments in the future are discussed.

16.
Sci Bull (Beijing) ; 68(2): 157-164, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36653216

ABSTRACT

The bulk-boundary correspondence (BBC) refers to the consistency between eigenvalues calculated under open and periodic boundary conditions. This consistency can be destroyed in systems with non-Hermitian skin effect (NHSE). In spite of the great success of the generalized Brillouin zone (GBZ) theory in clean non-Hermitian systems, the applicability of GBZ theory is questionable when the translational symmetry is broken. Thus, it is of great value to rebuild the BBC for disordered samples, which extends the application of GBZ theory in non-Hermitian systems. Here, we propose a scheme to reconstruct BBC, which can be regarded as the solution of an optimization problem. By solving the optimization problem analytically, we reconstruct the BBC and obtain the modified GBZ theory in several prototypical disordered non-Hermitian models. The modified GBZ theory provides a precise description of the fantastic NHSE, which predicts the asynchronous-disorder-reversed NHSE's directions.

17.
Toxicol Appl Pharmacol ; 461: 116401, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36706924

ABSTRACT

Chlorophenols (CPs) are widespread pollutants in nature. CPs have raised significant concern due to their potential hepatotoxic effects on humans. This research aimed to ascertain the inhibitory potential of eleven CPs (2-CP, 3-CP, 4-CP, 2,4-DCP, 2,3,4-TCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,5-TeCP, 2,3,4,6-TeCP, 2,3,5,6-TeCP, and PCP) on nine human CYP isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4). The CPs that inhibit the activity of CYP isoforms were detected with human liver microsomes (HLM) using a cocktail approach in vitro. The results demonstrated that trichlorophenols, tetrachlorophenols, and PCP strongly inhibited CYP2C8 and CYP2C9. The half inhibition concentration (IC50) value of 2,3,4,6-TeCP and PCP for CYP2C8 inhibition was 27.3 µM and 12.3 µM, respectively. The IC50 for the inhibition of 2,4,6-TCP, 2,3,4,6-TeCP and PCP towards CYP2C9 were calculated to be 30.3 µM, 5.8 µM and 2.2 µM, respectively. 2,3,4,6-TeCP, and PCP exhibited non-competitive inhibition towards CYP2C8. 2,4,6-TCP, 2,3,4,6-TeCP, and PCP exhibited competitive inhibition towards CYP2C9. The inhibition kinetics parameters (Ki) were 51.51 µM, 22.28 µM, 37.86 µM, 7.27 µM, 0.68 µM for 2,3,4,6-TeCP-CYP2C8, PCP-CYP2C8, 2,4,6-TCP-CYP2C9, 2,3,4,6-TeCP-CYP2C9, PCP-CYP2C9, respectively. This study also defined clear structure-activity relationships (SAR) of CPs on CYP2C8, supported by molecular docking studies. Overall, CPs were found to cause inhibitory effects on CYP isoforms in vitro, and this finding may provide a basis for CPs focused on CYP isoforms inhibition endpoints.


Subject(s)
Chlorophenols , Cytochrome P-450 Enzyme Inhibitors , Humans , Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP2C9/pharmacology , Molecular Docking Simulation , Cytochrome P-450 Enzyme Inhibitors/toxicity , Cytochrome P-450 Enzyme System , Microsomes, Liver , Chlorophenols/toxicity
18.
Adv Mater ; 35(22): e2209457, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36504310

ABSTRACT

The importance of modulations is elevated to an unprecedented level, due to the delicate conditions required to bring out exotic phenomena in quantum materials, such as topological materials, magnetic materials, and superconductors. Recently, state-of-the-art modulation techniques in material science, such as electric-double-layer transistor, piezoelectric-based strain apparatus, angle twisting, and nanofabrication, have been utilized in superconductors. They not only efficiently increase the tuning capability to the broader ranges but also extend the tuning dimensionality to unprecedented degrees of freedom, including quantum fluctuations of competing phases, electronic correlation, and phase coherence essential to global superconductivity. Here, for a comprehensive review, these techniques together with the established modulation methods, such as elemental substitution, annealing, and polarization-induced gating, are contextualized. Depending on the mechanism of each method, the modulations are categorized into stoichiometric manipulation, electrostatic gating, mechanical modulation, and geometrical design. Their recent advances are highlighted by applications in newly discovered superconductors, e.g., nickelates, Kagome metals, and magic-angle graphene. Overall, the review is to provide systematic modulations in emergent superconductors and serve as the coordinate for future investigations, which can stimulate researchers in superconductivity and other fields to perform various modulations toward a thorough understanding of quantum materials.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-961148

ABSTRACT

@#At present, implant surgery robots have basically achieved "surgical intelligence", but "brain-inspired intelligence" of robots is still in the stage of theory and exploration. The formulation of a clinical implantation plan depends on the timing of implantation, implantation area, bone condition, surgical procedure, patient factors, etc., which need to evaluate the corresponding clinical decision indicators and clinical pathways. Inspired by evidence-based medicine and the potential of big data and deep learning, combined with the data characteristics of clinical decision indicators and clinical pathways that can be quantitatively or qualitatively analyzed, this review simulates the cognitive behavior and neural mechanisms of the human brain and proposes a feasible brain-inspired intelligence scheme by predicting the decision indices and executing clinical pathways intelligently, that is, "select clinical indicators and clarify clinical pathways -- construct database -- use deep learning to intelligently predict decision indicators -- intelligent execution of clinical pathways -- brain-inspired intelligence of implant decision-making". Combined with the previous research results of our team, this review also describes the process of realization of brain-inspired intelligence for immediate implant timing decisions, providing an example of the comprehensive realization of brain-inspired intelligence of implant surgery robots in the future. In the future, how to excavate and summarize other clinical decision factors and select the best way to realize the automatic prediction of evidence-based clinical indicators and pathways and finally realize the complete intellectualization of clinical diagnosis and treatment processes will be one of the directions that dental clinicians need to strive for.

20.
ACS Appl Mater Interfaces ; 14(49): 54572-54586, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36468286

ABSTRACT

Due to their good mechanical performances and high biocompatibility, all-ceramic materials are widely applied in clinics, especially in orthopedic and dental areas. However, the "hard" property negatively affects its integration with "soft" tissue, which greatly limits its application in soft tissue-related areas. For example, dental implant all-ceramic abutments should be well integrated with the surrounding gingival soft tissue to prevent the invasion of bacteria. Mimicking the gingival soft tissue and dentine integration progress, we applied the modified ion-exchange technology to "activate" the biological capacity of lithium disilicate glass-ceramics, via introducing OH- to weaken the stability of Si-O bonds and release lithium ions to promote multi-reparative functions of gingival fibroblasts. The underlying mechanism was found to be closely related to the activation of mitochondrial activity and oxidative phosphorylation. In addition, during the ion-exchange process, the larger radius sodium ions (Na+) replaced the smaller radius lithium ions (Li+), so that the residual compressive stress was applied to the glass-ceramics surface to counteract the tensile stress, thus improving the mechanical properties. This successful case in simultaneous improvement of mechanical properties and biological activities proves the feasibility of developing "soft tissue integrative" all-ceramic materials with high mechanical properties. It proposes a new strategy to develop advanced bioactive and high strength all-ceramic materials by modified ion-exchange, which can pave the way for the extended applications of such all-ceramic materials in soft tissue-related areas.


Subject(s)
Ceramics , Lithium , Materials Testing , Delayed-Action Preparations , Surface Properties , Ceramics/chemistry , Ions , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL
...