Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 795, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001907

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by a constant incidence rate. Unfortunately, effective pharmacological treatments for this condition are lacking and the identification of novel therapeutic approaches and underlying pathological mechanisms are required. This study investigated the potential of quercetin in alleviating pulmonary fibrosis by promoting autophagy and activation of the SIRT1/AMPK pathway. METHODS: Mouse models of IPF were divided into four treatment groups: control, bleomycin (BLM), quercetin (Q), and quercetin + EX-527 (Q + E) treatment. Pulmonary fibrosis was induced in the mouse models through intratracheal instillation of BLM. Various indexes were identified through histological staining, Western blotting analysis, enzyme-linked immunosorbent assay, immunohistochemistry, and transmission electron microscopy. RESULTS: Quercetin treatment ameliorated the pathology of BLM-induced pulmonary fibrosis of mice by reducing α-smooth muscle actin (α-SMA), collagen I (Col I), and collagen III (Col III) levels, and also improved the level of E-cadherin in lung tissue. Furthermore, Quercetin significantly enhanced LC3II/LC3I levels, decreased P62 expression, and increased the number of autophagosomes in lung tissue. These effects were accompanied by the activation of the SIRT1/AMPK pathway. Treatment with EX-527, an inhibitor for SIRT1, reversed all effects induced by quercetin. CONCLUSION: This study showed that quercetin could alleviate pulmonary fibrosis and improve epithelial-mesenchymal transition by acting on the SIRT1/AMPK signaling pathway, which may be achieved by regulating the level of autophagy.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Bleomycin , Pulmonary Fibrosis , Quercetin , Signal Transduction , Sirtuin 1 , Animals , Bleomycin/adverse effects , Quercetin/pharmacology , Sirtuin 1/metabolism , Autophagy/drug effects , Signal Transduction/drug effects , Mice , AMP-Activated Protein Kinases/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Disease Models, Animal , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Epithelial-Mesenchymal Transition/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Mice, Inbred C57BL
2.
Article in English | MEDLINE | ID: mdl-36267093

ABSTRACT

Calycosin (CA) is a flavonoid extracted from the root of Astragalus membranaceus and has antioxidant, anti-inflammation, and antiapoptosis properties. The objective of this study was to investigate the efficacy of CA in protecting against pulmonary fibrosis. CA (14 mg/kg) and SB216763 (20 mg/kg) were administrated to bleomycin-induced pulmonary fibrosis mice for 3 weeks. The results concluded that CA alleviated the inflammation and collagen deposition in pulmonary fibrosis. In addition, CA reduced MDA level, enhanced SOD and TAC activities, and increased the activity of the Nrf2/HO-1 pathway. CA also regulated the expressions of apoptosis-related proteins. Moreover, CA enhanced autophagy via upregulating LC3, beclin1, PINK1, and reducing p62. CA also increased expression of LAMP1 and TFEB, and inhibited the release of lysosome enzymes from ruptured lysosomes. These results provide new evidence that CA protects against pulmonary fibrosis through inhibiting oxidative stress and apoptosis. In addition, autophagy abnormality and lysosome dysfunction are restored by CA.

3.
Front Pharmacol ; 13: 921209, 2022.
Article in English | MEDLINE | ID: mdl-35903328

ABSTRACT

Number 2 Feibi Recipe (N2FBR) is a traditional Chinese medicine formula for treating idiopathic pulmonary fibrosis. N2FBR inhibits H2O2-mediated oxidative stress damage in alveolar epithelial cells by increasing autophagy, as we previously demonstrated. However, it is unknown if similar mechanisms occur in vivo. We established a pulmonary fibrosis model by instilling bleomycin (BLM) from the airway to examine the effects of N2FBR on pulmonary fibrosis and investigate its probable mechanism in this work. We discovered that N2FBR treatment effectively alleviated interstitial fibrosis as well as collagen deposition, primarily in upregulating SOD, GSH-Px, T-AOC and downregulating MDA content. N2FBR also increased the expression of LC3B, Beclin-1, LAMP1, TFEB and downregulated the expression of p62, legumain. N2FBR treatment boosted the production of autophagosomes, according to the results of the TEM observation. Furthermore, we explored that N2FBR exerted its anti-oxidative stress and pro-autophagy effects via GSK-3ß/mTOR signalling pathway. Therefore, these results provide further evidence for the protective effect of N2FBR in pulmonary fibrosis. Our findings could have ramifications for the development of antifibrosis therapies.

4.
PLoS One ; 17(3): e0265006, 2022.
Article in English | MEDLINE | ID: mdl-35245333

ABSTRACT

BACKGROUND: Chinese herbs for supplementing qi and activating blood circulation (CH) combined with N-acetylcysteine (NAC) is widely used for idiopathic pulmonary fibrosis (IPF) in China, but there is a lack of literature to evaluate its efficacy and clinical value. PURPOSE: This study compared CH + NAC with other treatments by network meta-analysis to clarify its clinical value. METHODS: Cochrane Library, PubMed, Embase, Web of Science, China National Knowledge Infrastructure, WanFang Data, VIP Database, and China Biology Medicine were searched. Outcomes included lung function (DLCO (%), VC (%), FVC (%), FVC (L)), 6-min walking distance (6MWD), score of St George's respiratory questionnaire (SGRQ), blood gas analysis (PaO2, PaCO2). The data were analyzed by Review Manager 5.4, Stata 12.0 and ADDIS 1.16.5. RESULTS: 23 studies including 1390 patients (702 in intervention group and 688 in control group) were collected to compare 8 outcome indicators among different treatments involving CH, CH+NAC, CH+PFD, NAC, PFD and PFD+NAC on IPF. Network meta-analysis showed that CH was better than NAC in terms of DLCO (%) (MD = 5.14, 95%CI: 1.01 to 8.68) and 6MWD (MD = 49.17, 95%CI: 25.97 to 71.36) as well as PFD + NAC was better than NAC in terms of FVC (L) (MD = -0.56, 95%CI: -0.83 to -0.31). In rankings results, CH + NAC is the best in terms of FVC (%), SGRQ, PaO2 and PaCO2; CH is the best in terms of DLCO (%), VC (%) and 6MWD; CH + PFD is the best in terms of FVC (L). CONCLUSION: CH related treatments may have advantages in the treatment of IPF and CH + NAC may have clinical application value. However, limited by the quality and quantity of researches included, more rational and scientific randomized controlled trials containing large sample sizes need to be conducted to further verify our conclusions.


Subject(s)
Idiopathic Pulmonary Fibrosis , Acetylcysteine/therapeutic use , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Network Meta-Analysis , Oxygen/therapeutic use , Qi , Treatment Outcome
5.
Article in English | MEDLINE | ID: mdl-33763150

ABSTRACT

OBJECTIVE: The study aims to research the interventional effect and mechanism of astragaloside IV (Ast) synergizing with ferulic acid (FA) on idiopathic pulmonary fibrosis (IPF) induced by bleomycin in mice. METHODS: The mice were randomly divided into seven groups with 10 mice in each group, namely, a sham operation group, a model group, a miRNA-29b (miR-29) group, a miR-29b negative control group (NC group), a FA group, an Ast group, and a combination group. A mouse model of pulmonary fibrosis was established by intratracheal instillation of bleomycin. Samples were collected after 28 days of continuous administration. Hematoxylin and eosin (HE) and Masson staining were used to observe pathological changes in the lung tissue, and the degree of fibrosis was evaluated using the hydroxyproline content. Changes in transforming growth factor-ß1 (TGF-ß1) and Smad3 in the lung were observed using immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) in the serum. PCR was used to detect the expression of the miR-29b, TGF-ß1, Smad3, and nuclear factor E2-related factor 2 (Nrf2) genes. Western blotting was used to detect the content of the TGF-ß/Smad3 protein. RESULTS: Ferulic acid combined with astragaloside IV reduced the degree of pulmonary fibrosis and the synthesis of hydroxyproline in lung tissue. The combination of the two also regulated the oxidative stress response , TGF-ß1/Smad3 pathway and miR-29b in lung tissue. CONCLUSION: Astragaloside IV combined with ferulic acid regulated the oxidative stress of lung tissues and TGF-ß1/Smad3 signaling through miR-29b, thereby reducing the degree of pulmonary fibrosis. This provides a reference direction for the clinical treatment of IPF patients.

6.
Article in English | MEDLINE | ID: mdl-33101446

ABSTRACT

Fibrotic remodeling has become the result of many lung diseases, and these disorders can be categorized with known as well as unknown etiologies. Idiopathic pulmonary fibrosis is the most fatal disease among the unknown etiology. TGFß1/Smad3 signal pathway plays an important role in lung fibrosis and epithelial regeneration. This study investigated the effects and mechanism of Feibi Recipe (FBR) on pulmonary fibrosis. In this experiment, C57BL/6 mice were used and bleomycin was used to induce the lung injury. Meanwhile, the study showed a significant reduction in pathological response and mediators of inflammation and fibrosis such as IL-6, ICAM-1, IL-13, IL-17, BRP-39, TGFß1, Smad3, and Smad7 were identified. Collectively, the FBR appears to attenuate the lung injury and the modeling of fibrosis in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...