Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Biother Radiopharm ; 37(4): 300-312, 2022 May.
Article in English | MEDLINE | ID: mdl-34672813

ABSTRACT

Background: Cell division cycle 45 (CDC45) plays an important role in the occurrence and development of numerous carcinomas, but its effect in laryngeal squamous cell carcinoma (LSCC) remains unclear. Materials and Methods: The messenger RNA and protein expression levels of CDC45 in LSCC were evaluated with a t test and the standard mean difference (SMD). The ability of CDC45 expression to distinguish the LSCC was assessed through receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA), protein-protein interaction, public databases, and online tools were used to explore the potential molecular mechanism of CDC45 in LSCC. Results: A high expression of CDC45 was identified in LSCC (SMD = 2.61, 95% confidence interval [1.62-3.61]). Through ROC curves, the expression of CDC45 makes it feasible to distinguish the LSCC group from the non-LSCC counterpart. CDC45 was relevant to the progression-free interval of LSCC patients (log-rank p = 0.03). GSEAs show that CDC45 is related to the cell cycle. CDC45, CDC6, KIF2C, and AURKB were identified as hub genes of LSCC. E2F1 may be the regulatory transcription factor of CDC45. Conclusions: High expression of CDC45 likely demonstrates carcinogenic effects in LSCC, and CDC45 is a potential target in screening and treatment of LSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , Carcinoma, Squamous Cell/pathology , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/genetics
2.
Math Biosci Eng ; 18(5): 6941-6960, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34517565

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, the detection and prognosis of which are still unsatisfactory. Thus, it is essential to explore the factors that may identify ESCC and evaluate the prognosis of ESCC patients. RESULTS: Both protein and mRNA expression levels of BIRC5 are upregulated in ESCC group rather than non-ESCC group (standardized mean difference > 0). BIRC5 mRNA expression is related to the age, tumor location, lymph node stage and clinical stage of ESCC patients (p < 0.05). BIRC5 expression makes it feasible to distinguish ESCC from non-ESCC (area under the curve > 0.9), and its high expression is related to poor prognosis of ESCC patients (restrictive survival time difference = -0.036, p < 0.05). BIRC5 may play an important role in ESCC by influencing the cell cycle pathway, and CDK1, MAD2L and CDC20 may be the hub genes of this pathway. The transcription factors-MAZ and TFPD1 -are likely to regulate the transcription of BIRC5, which may be one of the factors for the high expression of BIRC5 in ESCC. CONCLUSIONS: The current study shows that upregulation of BIRC5 may have essential clinical value in ESCC, and contributes to the understanding of the pathogenesis of ESCC.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , Survivin/genetics , Up-Regulation
3.
Opt Express ; 29(5): 7134-7144, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726220

ABSTRACT

We present an ab initio study of the quantum dynamics of high-order harmonic generation (HHG) near the cutoff in intense laser fields. To uncover the subtle dynamical origin of the HHG near the cutoff, we extend the Bohmian mechanics (BM) approach for the treatment of attosecond electronic dynamics of H and Ar atoms in strong laser fields. The time-dependent Schrödinger equation and the self-interaction-free time-dependent density functional theory are numerically solved accurately and efficiently by means of the time-dependent generalized pseudospectral method for nonuniform spatial discretization of the Hamiltonian. We find that the most devoting trajectories calculated by the BM to the plateau harmonics are shorter traveling trajectories, but the contributions of the short trajectories near the cutoff are suppressed in HHG. As a result, the yields of those harmonics in the region near the cutoff are relatively weak. However, for the last few harmonics just above the cutoff, the HHG intensity becomes a little higher. This is because the HHG just above the cutoff arises from those electrons ionized near the peak of the laser pulse, where the ionization rate is the highest. In addition, the longer Bohmian trajectories return to the core with lower energies, these trajectories contribute to the below-threshold harmonics. Our results provide a deeper understanding of the generation of supercontinuum harmonic spectra and attosecond pulses via near cutoff HHG.

SELECTION OF CITATIONS
SEARCH DETAIL
...