Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Nano ; 19(1): 104, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886274

ABSTRACT

Advancements in nanofabrication technology have greatly facilitated research on nanostructures and their associated properties. Among these structures, subwavelength components have emerged as promising candidates for ultra-compact optical elements, can potentially supplant conventional optical components and enable the realization of compact and efficient optical devices. Spectral analysis within the infrared spectrum offers a wealth of information for monitoring crop health, industrial processes, and target identification. However, conventional spectrometers are typically bulky and expensive, driving an increasing demand for cost-effective spectral sensors. Here we investigate three distinct subwavelength grating structures designed to function as narrowband filters within the short-wavelength infrared (SWIR) range. Through simple adjustments to the period of grating strips, these filters selectively transmit light across a wide wavelength range from 1100 to 1700 nm with transmission exceeding 70% and full width at half maximum (FWHM) down to 6 nm. Based on a simple design, the results present great potential of subwavelength grating filters for multiband integration and developing ultra-compact spectral sensors.

2.
Nanomaterials (Basel) ; 13(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37947739

ABSTRACT

InGaAs photodiodes have a wide range of important applications; for example, NIR imaging, fiber optical communication, and spectroscopy. In this paper, we studied InGaAs photodiodes with different doping concentration absorber layers. The simulated results suggested that, by reducing the absorber doping concentration from 1 × 1016 to 1 × 1015 cm-3, the maximum quantum efficiency of the devices can rise by 1.2%, to 58%. The simulation also showed that, by increasing the doping concentration of the absorber layer within a certain range, the dark current of the device can be slightly reduced. A PIN structure was grown and fabricated, and CV measurements suggested a low doping concentration of about 1.2 × 1015 cm-3. Although the thermal activation energy of the dark current suggested a distinct component of shunt dark current at a high temperature range, a dark current of ~6 × 10-4 A/cm2 (-0.5 V) was measured at room temperature. The peak quantum efficiency of the InGaAs device was characterized as 54.7% without antireflection coating and 80.2% with antireflection coating.

3.
RSC Adv ; 13(9): 5993-6001, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36814873

ABSTRACT

High-quality CsCu2X3 and Cs3Cu2X5 (X = Cl, Br, I) nanocrystals (NCs) exhibit excellent optoelectronic, physical, and chemical properties for detection of UV radiation due to large carrier mobility and lifetime, and heavy atoms. The nanocrystal materials can be prepared via a low-cost and simple solid-state synthesis. However, poor reproducibility and complex synthesis methods of obtaining perovskite NC thin films represent a drawback for the fabrication of the commercial photoelectric device. To address these issues, we develop highly stable CsCu2X3 and Cs3Cu2X5 NC materials using a facile solid-state reaction method for the scale-up production of halogen lead-free perovskites. We suggest a distinctive way to design a series of nanocrystalline perovskites using short-term synthesis and study the mechanism of perovskite formation using thermal solid-state synthesis. These all-inorganic and lead-free CsCu2X3 and Cs3Cu2X5 exhibit large photoluminescence quantum yields (PLQYs) up to 95.2%. Moreover, flexible paper photodetectors based on this series of lead-free perovskites show strong photoselectivity and bending stability at 254 nm, 365 nm, and 405 nm wavelengths. High-quality responses with a responsivity of 1.1 × 10-3 A W-1 and detectivity of 2.71 × 109 jones under UV illumination (10 µW cm-2) at a bias voltage of 5 mV are demonstrated. These results open prospects for designing photodetectors, LEDs, and other photosensitive devices.

4.
ACS Appl Mater Interfaces ; 14(30): 34937-34945, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35860898

ABSTRACT

With the rapid advances in metal halide perovskite optoelectronics, eliminating toxic lead from perovskites has been an urgent demand. However, state-of-the-art lead-free perovskite photodetectors are still challenged with issues of low photoresponse, poor stability, etc. Here, all-inorganic lead-free perovskite (Cs3Cu2I5) single crystals that possess good stability under air exposure are synthesized via a facile solid reaction method. Meanwhile, a higher photoluminescence quantum yield of 95.2% and a prolonged carrier lifetime of 1.127 µs are obtained by further optimizing the synthesis. Benefiting from the polyporous surface and hollow structure of Cu-7,7,8,8-tetracyanoquinodimethane (CuTCNQ) microtubes, more Cs3Cu2I5 nanocrystals can adhere on the innershell and outershell of CuTCNQ-15 microtubes. This unique structure contributes to the improved efficiency of utilizing incident light and promotes charge carrier generation and transportation. As a result, the hierarchical CuTCNQ/Cs3Cu2I5 (hollow microtube/nanocrystal) heterostructure phototransistor exhibits a high responsivity of 88.36 A W-1 and a large detectivity of 1.66 × 1012 Jones. The proposed lead-free perovskites and mixed-dimensional heterojunctions are promising for sensitive light detection.

5.
ACS Appl Mater Interfaces ; 14(6): 8243-8250, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35104399

ABSTRACT

Two-dimensional (2D) molybdenum disulfide (MoS2) has emerged as a prospective candidate for photodetection. However, due to the surface defects formed during the synthesis, the low photoresponse of 2D MoS2 photodetectors restricts its practical applications. Here, we developed a hybrid plasmonic structure that integrates MXene nanoparticles (MNPs) and 2D MoS2. With the introduction of MNPs, light waves are concentrated on MoS2 nanosheets via a strong localized surface plasmon resonance. Consequently, MNPs-decorated MoS2 photodetectors exhibit an improved photoresponse, including a higher responsivity (20.67 A/W), a larger detectivity of 5.39 × 1012 Jones, and a maximum external quantum efficiency of over 5000%. A 150-fold enhanced detectivity (2.33 × 1012 Jones) was achieved under 635 nm light illumination in the optimized device. These results provide an alternative approach for improving the photoresponse of MoS2 photodetectors.

6.
ACS Appl Mater Interfaces ; 13(26): 30950-30958, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34160197

ABSTRACT

Narrow-band-gap III-V semiconductor nanowires (NWs) with a suitable band structure and strong light-trapping ability are ideal for high-efficiency low-cost solar water-splitting systems. However, due to their nanoscale dimension, they suffer more severe corrosion by the electrolyte solution than the thin-film counterparts. Thus, short-term durability is the major obstacle for using these NWs for practical water-splitting applications. Here, we demonstrated for the first time that a thin layer (∼7 nm thick) of compact TiO2 deposited by atomic layer deposition can provide robust protection to III-V NWs. The protected GaAs NWs maintain 91.4% of its photoluminescence intensity after 14 months of storage in ambient atmosphere, which suggests the TiO2 layer is pinhole-free. Working as a photocathode for water splitting, they exhibited a 45% larger photocurrent density compared with unprotected counterparts and a high Faraday efficiency of 91% and can also maintain a record-long highly stable performance among narrow-band-gap III-V NW photoelectrodes; after 67 h photoelectrochemical stability test reaction in a strong acid electrolyte solution (pH = 1), they show no apparent indication of corrosion, which is in stark contrast to the unprotected NWs that fully failed after 35 h. These findings provide an effective way to enhance both stability and performance of III-V NW-based photoelectrodes, which are highly important for practical applications in solar-energy-based water-splitting systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...