Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Clin Chim Acta ; 556: 117852, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38438006

ABSTRACT

BACKGROUND: Coronary heart disease (CHD) is the most important complication of type 2 diabetes mellitus (T2DM) and the leading cause of death. Identifying the risk of CHD in T2DM patients is important for early clinical intervention. METHODS: A total of 213 participants, including 81 healthy controls (HCs), 69 T2DM patients and 63 T2DM patients complicated with CHD were recruited in this study. Serum metabolomics were conducted by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Demographic information and clinical laboratory test results were also collected. RESULTS: Metabolic phenotypes were significantly altered among HC, T2DM and T2DM-CHD. Acylcarnitines were the most disturbed metabolites between T2DM patients and HCs. Lower levels of bile acids and higher levels of fatty acids in serum were closely associated with CHD risk in T2DM patients. Artificial neural network model was constructed for the discrimination of T2DM and T2DM complicated with CHD based on myristic acid, palmitic acid and heptanoylcarnitine, with accuracy larger than 0.95 in both training set and testing set. CONCLUSION: Altogether, these findings suggest that myristic acid, palmitic acid and heptanoylcarnitine have a good prospect for the warning of CHD complications in T2DM patients, and are superior to traditional lipid, blood glucose and blood pressure indicators.


Subject(s)
Carnitine/analogs & derivatives , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Coronary Artery Disease/complications , Palmitic Acid , Tandem Mass Spectrometry , Myristic Acid , Arteries/metabolism , Biomarkers , Machine Learning
2.
J Drug Target ; 31(10): 1098-1110, 2023 12.
Article in English | MEDLINE | ID: mdl-37909691

ABSTRACT

Backgroud: Breast cancer is a prevalent malignancy among women, with triple-negative breast cancer (TNBC) comprising approximately 15-20% of all cases, possessing high invasiveness, drug resistance and poor prognosis. Chemotherapy, the main treatment for TNBC, is limited by toxicity and drug resistance. Apolipoprotein A1 modified doxorubicin liposome (ApoA1-lip/Dox) was constructed in our previous study, with promising anti-tumour effect and improved safety been proved. However, during long-term administration, the problem of cumulative toxicity and insufficient tumour inhibition is still inevitable. Interleukin-21 is a small molecule protein secreted by T cells with various immune regulatory functions. IL-21 has significantly curative effects in numerous solid tumours, but it has the disadvantages of low response rate and short half-life. The combination of chemotherapy and immunotherapy has received increasing attention.Purpose: In this study, ApoA1 drug loading system and long-acting IL-21 are innovatively combined for tumour treatment.Methods: We combined ApoA1-lip/Dox and IL-21 for treatment and evaluated their impact on tumor-infiltrating lymphocytes and CD8+ T and NK cell cytotoxicity.Results: Combined administration significantly improved the tumour-infiltrating lymphocytes and enhanced the cytotoxicity of CD8+ T and NK cells. The combination of ApoA1-lip/Dox and IL-21 exhibits significantly enhanced anti-tumour efficacy with lower toxicity of ApoA1-lip/Dox, providing a new strategy for TNBC treatment with enhanced anti-tumour response and reduced toxicity.


Subject(s)
Liposomes , Triple Negative Breast Neoplasms , Mice , Female , Humans , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Apolipoprotein A-I/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Immunotherapy , Cell Line, Tumor
3.
Drug Des Devel Ther ; 17: 2657-2667, 2023.
Article in English | MEDLINE | ID: mdl-37670905

ABSTRACT

Background: The synergistic effect of dihydromyricetin (DHM) and fluconazole (FLC) can improve the killing effect of FLC-resistant Candida albicans in vitro and in vivo. However, it is not clear whether DHM affects the pharmacokinetic characteristics of FLC. Methods: In this study, 12 Sprague-Dawley (SD) rats were randomly divided into two groups as follows: (1) an FLC group in which rats were administered FLC only (42 mg/kg orally); (2) an FLC with the combined administration of DHM group, in which rats received an equivalent FLC dose immediately following the administration of DHM (100 mg/kg). Blood samples were collected from the ocular choroid vein of rats and converted into plasma. The concentrations of FLC in the rat plasma were then determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and the related pharmacokinetic parameters were analysed. The initial mobile phase included 0.1% acetonitrile and water with gradient elution. Multiple reaction monitoring modes of m/z 307.2→220.1 for FLC, and m/z 237.1→194.2 for carbamazepine, were utilised to conduct quantitative analysis. Results: The calibration curve of FLC in rat plasma demonstrated good linearity in the range of 0.1-30 µg/mL (r > 0.99), and the lower limit of quantification was 0.1 µg/mL. Moreover, the intra- and inter-day precision relative standard deviation of FLC was less than 9.09% and 6.51%, respectively. There were no significant differences in the pharmacokinetic parameters between the two groups. Conclusion: The results showed that DHM administration did not significantly alter FLC pharmacokinetics in SD rat plasma.


Subject(s)
Fluconazole , Tandem Mass Spectrometry , Rats , Animals , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid
4.
Nutr Metab Cardiovasc Dis ; 33(8): 1556-1564, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37263915

ABSTRACT

BACKGROUND AND AIMS: Aortic dissection (AD), a severe clinical emergency with high mortality, is easily misdiagnosed as are other cardiovascular diseases. This study aimed at discovering plasma metabolic markers with the potential to diagnose AD and clarifying the metabolic differences between two subtypes of AD. METHODS AND RESULTS: To facilitate the diagnosis of AD, we investigated the plasma metabolic profile by metabolomic approach. A total 482 human subjects were enrolled in the study: 80 patients with AD (50 with Stanford type A and 30 with Stanford type B), 198 coronary artery disease (CAD) patients, and 204 healthy individuals. Plasma samples were submitted to targeted metabolomic analysis. The partial least-squares discriminant analysis models were constructed to illustrate clear discrimination of AD patients with CAD patients and healthy control. Subsequently, the metabolites that were clinically relevant to the disturbances in AD were identified. Twenty metabolites induced the separation of AD patients and healthy control, 9 of which caused the separation of CAD patients and healthy control. There are 11 metabolites specifically down-regulated in AD group. Subgroup analysis showed that the levels of glycerol and uridine were dramatically lower in the plasma of patients with Stanford type A AD than those in the healthy control or Stanford type B AD groups. CONCLUSION: This study characterized metabolomic profiles specifically associated with the pathogenesis and development of AD. The findings of this research may potentially lead to earlier diagnosis and treatment of AD.


Subject(s)
Aortic Dissection , Coronary Artery Disease , Humans , Aortic Dissection/diagnosis , Metabolomics/methods , Metabolome , Coronary Artery Disease/diagnosis
5.
Bioanalysis ; 15(5): 269-282, 2023 03.
Article in English | MEDLINE | ID: mdl-37083541

ABSTRACT

Background: Aimed to simultaneously measure linezolid, voriconazole, cefoperazone and fluconazole in human plasma suitable for therapeutic drug monitoring applications, a robust, rapid and easy-to-use HPLC-MS/MS approach was developed and validated. Materials & methods: Protein precipitation was used to prepare analytes from 100 µl plasma. HPLC was employed for analyte separation, and quantification was conducted via multiple-reaction monitoring in positive ion mode. The methodology was fully validated. Results & conclusion: All four antibiotics were found to be stable under the tested conditions, and accuracy values ranged from 90.96 to 113.25% and CV values were <14.0%. This HPLC-MS/MS method can be used for routine clinical therapeutic drug monitoring of linezolid, voriconazole, cefoperazone and fluconazole simultaneously.


Subject(s)
Anti-Bacterial Agents , Fluconazole , Humans , Chromatography, Liquid , Voriconazole , Tandem Mass Spectrometry/methods , Cefoperazone , Linezolid , Drug Monitoring/methods , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
6.
Protein Expr Purif ; 205: 106244, 2023 05.
Article in English | MEDLINE | ID: mdl-36737029

ABSTRACT

In the present study, an engineered interleukin-2 (IL-2) fusion protein consisting of an anti-human serum albumin nanobody linked by ASTKG and a (G4S)2 linker to IL-2 was constructed. Liquid chromatography-mass spectrometry (LC-MS) characterization was performed on the intact molecule and at the peptide level. The LC-MS molecular mass analysis for the engineered fusion protein showed the appearance of unreported +340 Da peaks, apart from the expected O-glycosylation-related peaks in the IL-2 domain. Through a combination analysis of a K120R mutated molecule (The lysine at the position of 120 was mutated to arginine while the rest amino acid sequence remain unchanged), the possibility of a non-cleaved valine-histidine-serine signal peptide was ruled out and the presence of hydroxylysine (HyK) O-glycosylation in the ASTKG linker was confirmed. HyK O-glycosylation have been reported in other proteins such as collagen, which occurs in the conserved Gly-Xaa-HyK motif and is catalyzed by lysyl hydroxylase-3 complex. The present study showed high similar conserved motif of HyK-O-glycosylation in collagen, implying the HyK O-glycosylation in the engineered IL-2 possibly was catalyzed by the Chinese hamster ovary homolog of enzymes promoting HyK O-glycosylation in collagen. Bioactivity testing results revealed that HyK-O-glycosylation had no obvious effect on the in vitro activity of engineered IL-2. Our study is the first to report HyK-O-glycosylation modifications in therapeutic proteins through LC-MS characterization and in vitro activity analysis, which expands the scope of post-translational modification knowledge of therapeutic proteins.


Subject(s)
Hydroxylysine , Interleukin-2 , Cricetinae , Animals , Glycosylation , Hydroxylysine/chemistry , Interleukin-2/genetics , CHO Cells , Cricetulus , Protein Processing, Post-Translational , Collagen/chemistry
7.
MAbs ; 15(1): 2153409, 2023.
Article in English | MEDLINE | ID: mdl-36511654

ABSTRACT

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a critical inhibitory checkpoint molecule, and monoclonal antibodies (mAbs) targeting CTLA-4 that restore anti-tumor T cell immunity have achieved clinical success. Here, we report a humanized IgG1 mAb, namely JS007, with high binding affinity to CTLA-4. JS007 shows superior binding affinity and T-cell activating efficiency over ipilimumab. Moreover, it demonstrates substantial in vivo tumor suppression efficacy at low doses. The crystal structure of JS007/CTLA-4 complex (PDB: 8HIT) shows JS007 adopts a heavy-chain-dominant binding mode, and mainly contacts the BC loop, DE loop and FG loop of CTLA-4. Notably, two Tyr residues (VH-Y100 and VL-Y32) from the complementarity-determining region loops insert into the two cavities formed by the residues from the loops of CTLA-4, which may contribute to the stabilization of the binding. Comparative analysis with other anti-CTLA-4 mAbs indicates that the double "wedge-into-hole" binding mode is unique for JS007 and may be responsible for the high-affinity binding to CTLA-4. These findings have provided an important molecular understanding of the high-affinity CTLA-4 blockade mAbs and shed light on future development of agents targeting CTLA-4.


Subject(s)
Neoplasms , Humans , Ipilimumab/therapeutic use , Ipilimumab/pharmacology , Neoplasms/therapy , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Blocking , Complementarity Determining Regions
8.
Front Immunol ; 13: 947756, 2022.
Article in English | MEDLINE | ID: mdl-36003387

ABSTRACT

Immunotherapy especially immune checkpoint inhibitors (ICIs) has brought favorable clinical results for numerous cancer patients. However, the efficacy of ICIs in colorectal cancer (CRC) is still unsatisfactory due to the poor median progression-free survival and overall survival. Here, based on the CRC models, we tried to elucidate novel relapse mechanisms during anti-PD-1 therapy. We found that PD-1 blockade elicited a mild antitumor effect in these tumor models with both increased CD8+ T cells and Treg cells. Gene mapping analysis indicated that proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, transforming growth factor-ß (TGF-ß), and CD36 were unexpectedly upregulated during PD-1 blockade. To investigate the critical role of these proteins especially PCSK9 in tumor growth, anti-PCSK9 antibody in combination with anti-PD-1 antibody was employed to block PCSK9 and PD-1 simultaneously in CRC. Data showed that neutralizing PCSK9 during anti-PD-1 therapy elicited a synergetic antitumor effect with increased CD8+ T-cell infiltration and inflammatory cytokine releases. Moreover, the proportion of Treg cells was significantly reduced by co-inhibiting PCSK9 and PD-1. Overall, inhibiting PCSK9 can further enhance the antitumor effect of anti-PD-1 therapy in CRC, indicating that targeting PCSK9 could be a promising approach to potentiate ICI efficacy.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , PCSK9 Inhibitors , Proprotein Convertase 9/metabolism , T-Lymphocytes, Regulatory
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(4): 676-681, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35871740

ABSTRACT

Objective: To explore the application value of the "three-low" technique (low radiation dose, low contrast agent dosage and low contrast agent flow rate) combined with artificial intelligence iterative reconstruction (AIIR) in aortic CT angiography (CTA). Methods: A total of 33 patients who underwent aortic CTA were prospectively enrolled. Based on the time of their follow-up examinations, the imaging data were divided into Group A and Group B, with Group A being the control group (100 kV, 0.8 mL/kg, 5 mL/s) and Group B being the "three-low" technique group (70 kV, 0.5 mL/kg, 3 mL/s). In group A, the images were reconstructed by Karl iterative algorithm. Group B was divided into B1 and B2 subgroups, with their images being reconstructed by Karl iterative algorithm and AIIR, respectively. The CT and SD values of the ascending aorta, descending aorta, abdominal aorta, left common iliac artery and right common iliac artery were measured, and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The subjective scoring of image quality was performed. The radiation dose parameters were documented. Results: Differences in the CT value, SD value, SNR and CNR of the three groups were statistically significant ( P<0.001). The CT value, SNR and CNR of group B2 were significantly higher than those of group B1, while the SD value of group B2 was significantly lower than that of group B1 ( P<0.017). There was no significant difference between the CT values of group A and those of group B2 ( P>0.017). The SD values, SNR and CNR in group B2 were better than those in group A ( P>0.017). There was significant difference in the subjective evaluation of image quality among the three groups ( P<0.05), but there was no significant difference between group A and group B2 ( P>0.017). The radiation dose and contrast medium dosage in group B decreased 84.14% and 37.08%, respectively, compared with those of group A. Conclusion: With the "three-low" technique combined with AIIR algorithm, the image quality of aortic CTA obtained is comparable to that of conventional dose scanning, while the radiation dose, contrast agent dosage and contrast agent flow rate of patients are significantly reduced.


Subject(s)
Artificial Intelligence , Computed Tomography Angiography , Algorithms , Aorta/diagnostic imaging , Computed Tomography Angiography/methods , Contrast Media , Humans , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed
10.
Front Chem ; 10: 861952, 2022.
Article in English | MEDLINE | ID: mdl-35464212

ABSTRACT

Clevidipine is an ultrashort-acting dihydropyridine calcium antagonist, which can control blood pressure accurately. It is necessary to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitate clevidipine and its active metabolite H152/81 for clinical pharmacokinetic study and therapeutic drug monitoring. Liquid-liquid extraction was used for sample preparation, and clevidipine-d7 and H152/81-13C-d3 were chosen as the isotope internal standard. The chromatographic separation was performed on an ACE Excel 2 Phenyl column (50 × 2.1 mm). Mass quantification was carried out on the multiple reaction monitoring of the transitions of m/z 473.1→338.1, 480.1→338.1, 356.0→324.0, and 362.2→326.2 for clevidipine, clevidipine-d7, H152/81, and H152/81-13C-d3. The validated method gave an excellent linearity over a concentration range of 0.1-30 ng/ml for clevidipine and 2-600 ng/ml for H152/81. Other fully validated content such as accuracy, precision, extraction recovery, matrix effect, and stability were also investigated and showed satisfactory results. It was strongly recommended that whole blood is the first choice for clinical bioanalysis. Using whole blood for sample analysis can reduce the whole blood collection volume (1 ml vs. 4 ml) and shorten the time from sample collection to storage to 5 min, and there is no centrifugation process and precooling in the ice water bath, which can further reduce the instability caused by exposure. The method was successfully applied to a bioequivalence study of clevidipine butyrate-injectable emulsion.

11.
Emerg Microbes Infect ; 11(1): 548-551, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35060840

ABSTRACT

The neutralizing antibody is a potential therapeutic for the ongoing COVID-19 pandemic. As an antiviral agent, numerous mAbs recognize the epitopes that overlap with ACE2-binding sites in the SARS-CoV-2-RBD. Some studies have shown that residual changes on the spike protein can significantly decrease the efficiency of neutralizing antibodies. To address this issue, a therapeutic cocktail could be an effective countermeasure. In the present study, we isolated a fully human neutralizing antibody, JS026, from a convalescent patient. The comparative analysis revealed that JS026 binding to SARS-CoV-2-RBD mainly located between epitopes for class 2 and class 3 mAbs as opposed to that of class 1 (etesevimab) antibodies. A cocktail of etesevimab and JS026 increased neutralizing efficacy against both wild-type SARS-CoV-2 and the recent emergence of Alpha, Beta, Gamma, and Delta variants. JS026 and the cocktail reduced virus titers in the infected lungs of hACE2 transgenic mice and relieved pathological changes. These findings would benefit antibody-based therapeutic countermeasures in the treatment of COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19 , Humans , Mice , Mice, Transgenic , Pandemics , SARS-CoV-2/drug effects
12.
MAbs ; 14(1): 2005507, 2022.
Article in English | MEDLINE | ID: mdl-34923915

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a serious public health crisis worldwide, and considering the novelty of the disease, preventative and therapeutic measures alike are urgently needed. To accelerate such efforts, the development of JS016, a neutralizing monoclonal antibody directed against the SARS-CoV-2 spike protein, was expedited from a typical 12- to 18-month period to a 4-month period. During this process, transient Chinese hamster ovary cell lines are used to support preclinical, investigational new drug-enabling toxicology research, and early Chemistry, Manufacturing and Controls development; mini-pool materials to supply Phase 1 clinical trials; and a single-clone working cell bank for late-stage and pivotal clinical trials were successively adopted. Moreover, key process performance and product quality investigations using a series of orthogonal and state-of-the-art techniques were conducted to demonstrate the comparability of products manufactured using these three processes, and the results indicated that, despite observed variations in process performance, the primary and high-order structures, purity and impurity profiles, biological and immunological functions, and degradation behaviors under stress conditions were largely comparable. The study suggests that, in particular situations, this strategy can be adopted to accelerate the development of therapeutic biopharmaceuticals and their access to patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibody Affinity/immunology , Antibody Specificity/immunology , CHO Cells , COVID-19/prevention & control , COVID-19/virology , Chromatography, High Pressure Liquid/methods , Circular Dichroism , Clone Cells , Cricetinae , Cricetulus , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Isoelectric Point , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism
13.
Curr Drug Metab ; 22(14): 1132-1138, 2021.
Article in English | MEDLINE | ID: mdl-34825867

ABSTRACT

OBJECTIVE: The aim of the study was to investigate a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of rivaroxaban and evaluate the correlation between plasma concentration and anti-Xa activity in patients using oral rivaroxaban. METHODS: In this study, the plasma concentration of rivaroxaban and anti-Xa factor activities was determined in 125 patients, and the relationship between the two variables was analysed by SPSS 21.0 software. RESULTS: The results showed that the plasma concentrations of oral rivaroxaban patients were significantly correlated with the activity of the anti-Xa factor (Spearman's r = 0.990, P < 0.05). CONCLUSION: The plasma concentrations of rivaroxaban are a potentially useful monitoring indicator to assess the patient's bleeding risk if testing for plasma anti-Xa activity is not available.


Subject(s)
Chromatography, High Pressure Liquid/methods , Factor Xa Inhibitors/pharmacokinetics , Rivaroxaban/pharmacokinetics , Tandem Mass Spectrometry/methods , Drug Monitoring/methods , Factor Xa/drug effects , Factor Xa/metabolism , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/pharmacology , Female , Hemorrhage/chemically induced , Humans , Male , Rivaroxaban/adverse effects , Rivaroxaban/pharmacology
14.
Int Immunopharmacol ; 101(Pt A): 108307, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34735918

ABSTRACT

Interleukin-21 (IL-21) has exhibited anti-tumor activity in preclinical and clinical studies; however, its modest efficacy and short half-time has limited its therapeutic utility as a monotherapy. Therefore, we engineered a fusion protein (IL-21-αHSA) in which a nanobody targeting human serum albumin (HSA) was fused to the C-terminus of rhIL-21. The αHSA nanobody displayed broad species cross-reactivity and bound to a HSA epitope that does not overlap with the FcRn binding site, thus providing a strategic design for half-life extension. The IL-21-αHSA fusion protein showed increased stability compared to rhIL-21, while retaining its bioactivity in a liquid solution for at least 6 months. Moreover, IL-21-αHSA showed a dramatically extended half-life and prolonged exposure in cynomolgus monkeys, with the t1/2 and AUC nearly 10 and 50 times greater than that of rhIL-21, respectively. Furthermore, IL-21-αHSA displayed enhanced anti-tumor efficacy in two syngeneic mouse models. Notably, IL-21-αHSA increased the anti-tumor effect of programmed cell death protein 1 (PD-1) and T cell immunoglobulin and ITIM domain (TIGIT) blockades when used in combination, with a protection against tumor rechallenge, suggesting the formation of long-term anti-tumor memory response. KEGG analysis identified significantly enriched pathways associated with anti-tumor immune response, with increased expression of genes associated with CD8+ T and NK cell cytotoxicity. Overall, these data support further clinical evaluation of IL-21-αHSA as a monotherapy or in combination with immune checkpoint blockades.


Subject(s)
Antineoplastic Agents/therapeutic use , Interleukins/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Albumins , Animals , Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Female , Half-Life , Interleukins/administration & dosage , Interleukins/pharmacokinetics , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Recombinant Proteins
15.
Front Pharmacol ; 12: 621003, 2021.
Article in English | MEDLINE | ID: mdl-33935711

ABSTRACT

Background: Akebia saponin D (ASD) has a variety of biological activities and great medicinal potential, but its oral bioavailability is so low as to limit its development. Its pharmacokinetic profiles and excretion and metabolism in vivo have not been fully elucidated. This study was an attempt in this area. Methods: A simple LC-MS/MS method to simultaneously quantify ASD and its metabolites M1∼M5 in rat plasma, feces, urine and bile was established with a negative ESI model using dexketoprofen as the internal standard. Meanwhile, the UPLC-HR/MS system was used to screen all possible metabolites in the urine, feces and bile of rats, as compared with blank samples collected before administration. Absolute quantitative analysis was for M0, M3, M4, and M5, while semi-quantitative analysis was for M1, M2, and Orbitrap data. Results: The AUC0-t values after intravenous administration of 10 mg/kg and intragastrical administration of 100 mg/kg ASD were 19.05 ± 8.64 and 0.047 ± 0.030 h*µg/ml respectively. The oral bioavailability was determined to be extremely low (0.025%) in rats. The exposure of M4 and M5 in the oral group was higher than that of M0 in the terminal phase of the plasma concentration time profile, and ASD was stable in the liver microsome incubation system of rats, but metabolism was relatively rapid during anaerobic incubation of intestinal contents of rats, suggesting that the low bioavailability of ASD might have been attributed to the poor gastrointestinal permeability and extensive pre-absorption degradation rather than to the potent first pass metabolism. This assertion was further verified by a series of intervention studies, where improvement of lipid solubility and intestinal permeability as well as inhibition of intestinal flora increased the relative bioavailability to different extents without being changed by P-gp inhibition. After intravenous administration, the cumulative excretion rates of ASD in the urine and bile were 14.79 ± 1.87%, and 21.76 ± 17.61% respectively, but only 0.011% in feces, suggesting that the urine and bile were the main excretion pathways and that there was a large amount of biotransformation in the gastrointestinal tract. Fifteen possible metabolites were observed in the urine, feces and bile. The main metabolites were ASD deglycosylation, demethylation, dehydroxylation, decarbonylation, decarboxylation, hydroxylation, hydroxymethylation, hydroxyethylation and hydrolysis. Conclusion: The pharmacokinetics, bioavailability, metabolism and excretion of ASD in rats were systematically evaluated for the first time in this study. It has been confirmed that the ultra-low oral bioavailability is due to poor gastrointestinal permeability, extensive pre-absorption degradation and biotransformation. ASD after iv administration is not only excreted by the urine and bile, but possibly undergoes complex metabolic elimination.

16.
Acta Pharm Sin B ; 11(12): 3925-3934, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024316

ABSTRACT

T cell immunoglobulin and ITIM domain (TIGIT) is a novel immune checkpoint that has been considered as a target in cancer immunotherapy. Current available bioassays for measuring the biological activity of therapeutic antibodies targeting TIGIT are restricted to mechanistic investigations because donor primary T cells are highly variable. Here, we designed a reporter gene assay comprising two cell lines, namely, CHO-CD112-CD3 scFv, which stably expresses CD112 (PVRL2, nectin-2) and a membrane-bound anti-CD3 single-chain fragment variable (scFv) as the target cell, and Jurkat-NFAT-TIGIT, which stably expresses TIGIT as well as the nuclear factor of activated T-cells (NFAT) response element-controlled luciferase gene, as the effector cell. The anti-CD3 scFv situated on the target cells activates Jurkat-NFAT-TIGIT cells through binding and crosslinking CD3 molecules of the effector cell, whereas interactions between CD112 and TIGIT prevent activation. The presence of anti-TIGIT mAbs disrupts their interaction, which in turn reverses the inactivation and luciferase expression. Optimization and validation studies have demonstrated that this assay is superior in terms of specificity, accuracy, linearity, and precision. In summary, this reliable and effective reporter gene assay may potentially be utilized in lot release control, stability assays, screening, and development of novel TIGIT-targeted therapeutic antibodies.

17.
Anal Methods ; 12(46): 5591-5600, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33174880

ABSTRACT

Vitamin D metabolites are fat-soluble vitamins that regulate broad spectrum of physiological and pathological processes. Accurate and high-throughput methods for the detection of vitamin D metabolites are essential to elucidate body functions. In this study, a sensitive and high throughput ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method was proposed for the accurate quantification of six vitamin D metabolites, including vitamin D2, vitamin D3, 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D2, and 1,25-dihydroxyvitamin D3. Through the optimization of chromatographic and mass spectrometric conditions, only 20 µL serum or plasma could satisfy the quantification of six vitamin D metabolites. The limit of detection (LOD) was determined to be 0.02-0.05 pg mL-1. The validation method was carried out following the International Council for Harmonization (ICH) guidelines. All quantification performances, including linearity, accuracy, precision, extraction recovery and matrix effect, were investigated and were satisfactory for the accurate detection of vitamin D metabolites. A disease of the liver or kidney, the main organs for vitamin D metabolism, could lead to abnormal levels of vitamin D. Here, the established UHPLC-MS/MS method was further used for determination of vitamin D levels in plasma samples of patients after liver or kidney transplantation. Thirty-three liver transplant recipients (LTRs) and 63 kidney transplant recipients (KTRs) were included in this study. Vitamin D deficiency or insufficiency is common in KTRs and LTRs, with a prevalence of more than 99%.


Subject(s)
Kidney Transplantation , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Ergocalciferols , Humans , Liver , Vitamin D , Vitamins
19.
Anticancer Agents Med Chem ; 20(10): 1241-1249, 2020.
Article in English | MEDLINE | ID: mdl-32116205

ABSTRACT

BACKGROUND: Rabdosia japonica has been historically used in China as a popular folk medicine for the treatment of cancer, hepatitis, and gastricism. Glaucocalyxin A (GLA), an ent-kaurene diterpene isolated from Rabdosia japonica, is one of the main active ingredients showing potent inhibitory effects against several types of tumor cells. To the best of our knowledge, studies regarding the structural modification and Structure- Activity Relations (SAR) of this compound have not yet been reported. OBJECTIVE: The aim of this study was to discover more potent derivatives of GLA and investigate their SAR and cytotoxicity mechanisms. METHODS: Novel 7-O- and 14-O-derivatives of GLA were synthesized by condensation of acids or acyl chloride. The anti-tumor activities of these derivatives against various human cancer cell lines were evaluated in vitro by MTT assays. Apoptosis assays of compound 17 (7,14-diacylation product) were performed on A549 and HL-60 cells by flow cytometry and TUNNEL. The acute toxicity of this compound was tested on mice, at the dose of 300mg per kg body weight. RESULTS: Seventeen novel 7-O- and 14-O-derivatives of GLA (1-17) were synthesized. These compounds showed potent cytotoxicity against the tested cancer cell lines, and almost all of them were found to be more cytotoxic than GLA and oridonin. Of the synthesized derivatives, compound 17 presented the greatest cytotoxicity, with IC50 values of 0.26µM and 1.10µM in HL-60 and CCRF-CEM cells, respectively. Furthermore, this compound induced weak apoptosis of A549 cells but showed great potential in stimulating the apoptosis of HL- 60 cells. Acute toxicity assays indicated that compound 17 is relatively safer. CONCLUSION: The results reported herein indicate that the synthesized GLA derivatives exhibited greater cytotoxicity against leukemia cells than against other types of tumors. In particular, 7,14-diacylation product of GLA was found to be an effective anti-tumor agent. However, the cytotoxicity mechanism of this product in A549 cells is expected to be different than that in other tumor cell lines. Further research is needed to confirm this hypothesis.


Subject(s)
Antineoplastic Agents/pharmacology , Diterpenes, Kaurane/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes, Kaurane/chemical synthesis , Diterpenes, Kaurane/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
20.
Clin Pharmacol Drug Dev ; 9(5): 621-628, 2020 07.
Article in English | MEDLINE | ID: mdl-31595704

ABSTRACT

Olanzapine, a second-generation atypical antipsychotic drug, is widely used for schizophrenia and moderate to severe mania associated with bipolar disorders. This open-label, randomized, single-dose, 2-sequence, 2-period crossover, comparative pharmacokinetic study assessed the bioequivalence of 5 mg of olanzapine administered in tablet (R) or disintegrating tablet (T) formulation in healthy Chinese volunteers under both fasting and fed conditions. Numbers of enrolled subjects were 30 and 24 for fasting and fed treatments, respectively. Blood samples were drawn and collected predose as well as up to 144 hours postdose. The plasma concentration of olanzapine was quantitated by a robust, rapid, and sensitive liquid chromatography-tandem mass spectrometry method. The R was bioequivalent to T formulation under either fasting or fed conditions. The 90%CI for ratios of the geometric means observed maximum plasma concentration, area under the curve from time 0 extrapolated to last time point, and area under the curve from time 0 extrapolated to infinity were all within the allowed limit (80.0% to 125.0%). The pharmacokinetic profiles of T and R formulations were similar under fasting and fed conditions. Both formulations were well tolerated, with a similar incidence of treatment-emergent adverse events under fasting and fed conditions.


Subject(s)
Antipsychotic Agents/pharmacokinetics , Drug Compounding/statistics & numerical data , Mania/drug therapy , Olanzapine/pharmacokinetics , Schizophrenia/drug therapy , Administration, Oral , Adult , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/adverse effects , Antipsychotic Agents/blood , Asian People , Body Mass Index , Chromatography, Liquid/methods , Cross-Over Studies , Drug Compounding/trends , Fasting/blood , Female , Healthy Volunteers/statistics & numerical data , Humans , Male , Mania/psychology , Middle Aged , Olanzapine/administration & dosage , Olanzapine/adverse effects , Olanzapine/blood , Safety , Tandem Mass Spectrometry/methods , Therapeutic Equivalency
SELECTION OF CITATIONS
SEARCH DETAIL
...