Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
BMC Plant Biol ; 24(1): 359, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698306

ABSTRACT

BACKGROUND: Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS: A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION: These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.


Subject(s)
Biomass , Cadmium , Fertilizers , Mycorrhizae , Rhizosphere , Selenium , Soil Microbiology , Triticum , Triticum/growth & development , Triticum/microbiology , Triticum/drug effects , Mycorrhizae/physiology , Cadmium/analysis , Cadmium/toxicity , Fertilizers/analysis , Selenium/metabolism , Soil Pollutants/analysis , Soil Pollutants/toxicity , Microbiota/drug effects
2.
J Hazard Mater ; 472: 134516, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714056

ABSTRACT

There are many heavy metal stresses in agricultural biological systems, especially cadmium (Cd) stress, which prevent the full growth of plants, lead to a serious decline in crop yield, and endanger human health. Molybdenum (Mo), an essential nutrient element for plants, regulates plant growth mainly by reducing the absorption of heavy metals and protecting plants from oxidative damage. The aim of this study was to determine the protective effect of Mo (1 µM) application on wheat plants under conditions of Cd (10 µM) toxicity. The biomass, Cd and Mo contents, photosynthesis, leaf and root ultrastructure, antioxidant system, and active oxygen content of the wheat plants were determined. Mo increased the total chlorophyll content of wheat leaves by 43.02% and the net photosynthetic rate by 38.67%, and ameliorated the inhibitory effect of cadmium on photosynthesis by up-regulating photosynthesis-related genes and light-trapping genes. In addition, Mo reduced the content of superoxide anion (O2•-) by 16.55% and 31.12%, malondialdehyde (MDA) by 20.75% and 7.17%, hydrogen peroxide (H2O2) by 24.69% and 8.17%, and electrolyte leakage (EL) by 27.59% and 16.82% in wheat leaves and roots, respectively, and enhanced the antioxidant system to reduce the burst of reactive oxygen species and alleviate the damage of Cd stress on wheat. According to the above results, Mo is considered a plant essential nutrient that enhances Cd tolerance in wheat by limiting the absorption, accumulation and transport of Cd and by regulating antioxidant defence mechanisms. ENVIRONMENTAL IMPLICATION: Cadmium (Cd),is one of the most toxic heavy metals in the environment, and Cd pollution is a global environmental problem that threatens food security and human health. Molybdenum (Mo), as an essential plant nutrient, is often used to resist environmental stress. However, the mechanism of Mo treatment on wheat subjected to Cd stress has not been reported. In this study, we systematically analysed the effects of Mo on the phenotype, physiology, biochemistry, ultrastructure and Cd content of wheat subjected to Cd stress, and comprehensively analysed the transcriptomics. It not only reveals the mechanism of Mo tolerance to Cd stress in wheat, but also provides new insights into phytoremediation and plant growth in Cd-contaminated soil.


Subject(s)
Cadmium , Molybdenum , Photosynthesis , Plant Leaves , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/genetics , Cadmium/toxicity , Molybdenum/toxicity , Plant Leaves/drug effects , Plant Leaves/metabolism , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Soil Pollutants/toxicity , Antioxidants/metabolism , Transcriptome/drug effects , Chlorophyll/metabolism , Hydrogen Peroxide , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Gene Expression Regulation, Plant/drug effects
3.
Front Psychol ; 15: 1363562, 2024.
Article in English | MEDLINE | ID: mdl-38646111

ABSTRACT

Numerous studies have explored the effects of background music on reading comprehension, however, little is known about how native language (L1) lyrics and second language (L2) lyrics in background music influence reading comprehension performance for college students. The present study used a mixed experimental design to examine the effects of listening habits (between-participants variable: non-listeners or listeners), music type (between-participants variable: L1 (Mandarin) pop music, L2 (English) pop music or no music) and text language (within-participants variable: L1 or L2) on reading comprehension of college students in East China. A total of 90 participants (50 females) were screened into non- listeners (n = 45) and listeners (n = 45), and then were randomly assigned to one of three groups: Mandarin pop music group (n = 30), English pop music group (n = 30) and no music group (n = 30). The results showed that reading comprehension performance was negatively affected by music with lyrics compared to the no music condition. Furthermore, Chinese/English reading comprehension was reduced more by pop music in the same language as the written texts. As expected, non-listeners were more negatively affected by music with lyrics than listeners. For both listeners and non-listeners, average reading comprehension accuracy rates were the lowest in the condition of music with native language lyrics. Overall, our research findings indicate that listening to pop music with lyrics reduces reading comprehension performance. However, listening to background music cause much less distraction if the students commonly listen to music while reading. The current study supports the duplex-mechanism account of auditory distraction.

4.
Chemosphere ; 357: 142070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641297

ABSTRACT

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Subject(s)
Ammonium Compounds , Calcium , Density Functional Theory , Nitrates , Nitrogen , Phosphorus , Adsorption , Calcium/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Nitrates/chemistry , Ammonium Compounds/chemistry , Ferric Compounds/chemistry , Models, Chemical , Hydrogen-Ion Concentration
5.
J Environ Manage ; 353: 120143, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38301477

ABSTRACT

The application of nitrification inhibitors (nitrapyrin) and urease inhibitors (N-(N-butyl) thiophosphoric triamide) under conventional water resources has been considered as an effective means to improve nitrogen utilization efficiency and mitigate soil greenhouse gas emissions. However, it is not known whether the inhibitors still have an inhibitory effect under unconventional water resources (reclaimed water and livestock wastewater) irrigation and whether their use in combination with biochar improves the mitigation effect. Therefore, unconventional water resources were used for irrigation, with groundwater (GW) control. Nitrapyrin and N-(N-butyl) thiophosphoric triamide were used alone or in combination with biochar in a pot experiment, and CO2, N2O, and CH4 emissions were measured. The results showed that irrigation of unconventional water resources exacerbated global warming potential (GWP). All exogenous substance treatments increased CO2 and CH4 emissions and suppressed N2O emissions, independent of the type of water, compared to no substances (NS). The inhibitors were ineffective in reducing the GWP whether or not in combination with biochar, and the combined application of inhibitors with biochar further increased the GWP. This study suggests that using inhibitors and biochar in combination to regulate the greenhouse effect under unconventional water resources irrigation should be done with caution.


Subject(s)
Agriculture , Charcoal , Livestock , Organophosphorus Compounds , Animals , Agriculture/methods , Wastewater , Global Warming , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Soil , Fertilizers , Methane
6.
Chemosphere ; 352: 141295, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309605

ABSTRACT

Hierarchically porous magnetic biochar (HMB) had been found to act as an effective amendment to remediate cadmium (Cd) in water and soil in a previous study, but the effects on wheat growth, Cd uptake and translocation mechanisms, and soil microorganisms were unknown. Therefore, soil Cd form transformation, soil enzyme activity, soil microbial diversity, wheat Cd uptake and migration, and wheat growth were explored by adding different amounts of HMB to alkaline Cd-contaminated soil under pot experiments. The results showed that application of HMB (0.5 %-2.0 %) raised soil pH, electrical conductivity (EC) and available Fe concentration, decreased soil available Cd concentration (35.11 %-50.91 %), and promoted Cd conversion to less bioavailable Cd forms. HMB treatments could reduce Cd enrichment in wheat, inhibit Cd migration from root to stem, rachis to glume, glume to grain, and promote Cd migration from stem to leaf and stem to rachis. HMB (0.5 %-1.0 %) boosted antioxidant enzyme activity, reduced oxidative stress, and enhanced photosynthesis in wheat seedlings. Application of 1.0 % HMB increased wheat grain biomass by 40.32 %. Besides, the addition of HMB (0.5 %-1.0 %) could reduce soil Cd bioavailability, increase soil enzyme activity, and increase the abundance and diversity of soil bacteria. Higher soil EC brought forth by HMB (2.0 %) made the wheat plants and soil bacteria poisonous. This study suggests that applying the right amount of HMB to alkaline Cd-contaminated soil could be a potential remediation strategy to decrease Cd in plants' edible parts and enhance soil quality.


Subject(s)
Microbiota , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Soil/chemistry , Triticum , Porosity , Soil Pollutants/analysis , Charcoal/chemistry , Edible Grain/chemistry , Antioxidants/analysis , Magnetic Phenomena
7.
J Comput Assist Tomogr ; 48(2): 303-310, 2024.
Article in English | MEDLINE | ID: mdl-37654056

ABSTRACT

INTRODUCTION: In glioma patients that have undergone surgical tumor resection, the ability to reliably distinguish between pseudoprogression (PsP) and a recurrent tumor (RT) is of key clinical importance. Accordingly, this meta-analysis evaluated the utility of dynamic susceptibility contrast-enhanced perfusion-weighted imaging as a means of distinguishing between PsP and RT when analyzing patients with high-grade glioma. MATERIALS AND METHODS: The PubMed, Web of Science, and Wanfang databases were searched for relevant studies. Pooled analyses of sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) values were conducted, after which the area under the curve (AUC) for summary receiver operating characteristic curves was computed. RESULTS: This meta-analysis ultimately included 21 studies enrolling 879 patients with 888 lesions. Cerebral blood volume-associated diagnostic results were reported in 20 of the analyzed studies, and the respective pooled sensitivity, specificity, PLR, and NLR values were 86% (95% confidence interval [CI], 0.81-0.89), 83% (95% CI, 0.77-0.87), 4.94 (95% CI, 3.61-6.75), and 0.18 (95% CI, 0.13-0.23) for these 20 studies. The corresponding AUC value was 0.91 (95% CI, 0.88-0.93), and the publication bias risk was low ( P = 0.976). Cerebral blood flow-related diagnostic results were additionally reported in 6 of the analyzed studies, with respective pooled sensitivity, specificity, PLR, and NLR values of 85% (95% CI, 0.78-0.90), 85% (95% CI, 0.76-0.91), 5.54 (95% CI, 3.40-9.01), and 0.18 (95% CI, 0.12-0.26). The corresponding AUC value was 0.92 (95% CI, 0.89-0.94), and the publication bias risk was low ( P = 0.373). CONCLUSIONS: The present meta-analysis results suggest that dynamic susceptibility contrast-enhanced perfusion-weighted imaging represents an effective diagnostic approach to distinguishing between PsP and RT in high-grade glioma patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Sensitivity and Specificity , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Angiography , Perfusion
8.
Plant Physiol Biochem ; 206: 108199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100890

ABSTRACT

Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Cadmium/metabolism , Zinc/pharmacology , Zinc/metabolism , Triticum/metabolism , Fertilizers , Soil , Membrane Transport Proteins/metabolism , Gene Expression , Soil Pollutants/metabolism
9.
Front Plant Sci ; 14: 1252821, 2023.
Article in English | MEDLINE | ID: mdl-38023904

ABSTRACT

Over the years, microbial community composition in the rhizosphere has been extensively studied as the most fascinating topic in microbial ecology. In general, plants affect soil microbiota through rhizodeposits and changes in abiotic conditions. However, a consensus on the response of microbiota traits to the rhizosphere and bulk soils in various ecosystems worldwide regarding community diversity and structure has not been reached yet. Here, we conducted a meta-analysis of 101 studies to investigate the microbial community changes between the rhizosphere and bulk soils across various plant species (maize, rice, vegetables, other crops, herbaceous, and woody plants). Our results showed that across all plant species, plant rhizosphere effects tended to reduce the rhizosphere soil pH, especially in neutral or slightly alkaline soils. Beta-diversity of bacterial community was significantly separated between into rhizosphere and bulk soils. Moreover, r-strategists and copiotrophs (e.g. Proteobacteria and Bacteroidetes) enriched by 24-27% in the rhizosphere across all plant species, while K-strategists and oligotrophic (e.g. Acidobacteria, Gemmatimonadete, Nitrospirae, and Planctomycetes) decreased by 15-42% in the rhizosphere. Actinobacteria, Firmicutes, and Chloroflexi are also depleted by in the plant rhizosphere compared with the bulk soil by 7-14%. The Actinobacteria exhibited consistently negative effect sizes across all plant species, except for maize and vegetables. In Firmicutes, both herbaceous and woody plants showed negative responses to rhizosphere effects, but those in maize and rice were contrarily enriched in the rhizosphere. With regards to Chloroflexi, apart from herbaceous plants showing a positive effect size, the plant rhizosphere effects were consistently negative across all other plant types. Verrucomicrobia exhibited a significantly positive effect size in maize, whereas herbaceous plants displayed a negative effect size in the rhizosphere. Overall, our meta-analysis exhibited significant changes in microbial community structure and diversity responding to the plant rhizosphere effects depending on plant species, further suggesting the importance of plant rhizosphere to environmental changes influencing plants and subsequently their controls over the rhizosphere microbiota related to nutrient cycling and soil health.

10.
Plant Physiol Biochem ; 204: 108069, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37852066

ABSTRACT

A possible mechanism for the improved availability of zinc (Zn) in soil by combining nitrogen (N) with Zn supply was investigated based on the root exudates of winter wheat. N, Zn supply as well as their combination significantly regulated nine root exudates in winter wheat; in which, the secretion of cis-aconitic acid involving in the TCA cycle, C5-branched dibasic acid metabolism, glyoxylate and dicarboxylate metabolism and 2-oxocarboxylic acid metabolism was upregulated by N, Zn supply as well as their combination. N-Zn combination induced the activities of citrate synthase and cis-aconitase in roots and shoots of winter wheat thus to increase the concentrations of citric and aconitic acid; the decrease of isocitric acid concentrations in shoots indicated the inhibited conversion of aconitic acid to isocitric acid by N-Zn combination. It revealed a possible reason for the enhanced secretion of cis-aconitic acid by N-Zn combination. Exogenous addition of 10 µ plant-1 cis-aconitate significantly increased available Zn concentrations in soil and Zn concentrations in winter wheat under N-Zn combination. Thus, the N-Zn combination regulated the metabolism of cis-aconitic acid in winter wheat, thus enhancing the secretion of cis-aconitic acid to increase the bioavailability of Zn in soil.


Subject(s)
Triticum , Zinc , Zinc/metabolism , Triticum/metabolism , Soil , Nitrogen/metabolism , Aconitic Acid , Exudates and Transudates/metabolism
11.
Water Res ; 243: 120428, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37536247

ABSTRACT

Although the autopsies of reverse osmosis (RO) membranes from full-scale, brackish water desalination plants identify the co-presence of silica and Ca-based minerals in scaling layers, minimal research exists on their formation process and mechanisms. Therefore, combined scaling by silica and either gypsum (non-alkaline) or amorphous calcium phosphate (ACP, alkaline) was investigated in this study for their distinctive impacts on membrane performance. The obtained results demonstrate that the coexistence of silica and Ca-based mineral salts in feedwaters significantly reduced water flux decline as compared to single type of Ca-based mineral salts. This antagonistic effect was primarily attributed to the silica-mediated alleviation of Ca-based mineral scaling. In the presence of silica, silica skins were immediately established around Ca-based mineral precipitates once they emerged. Sheathing by the siliceous skins hindered the aggregation and thus the morphological evolution of Ca-based mineral species. Unlike sulfate precipitates, ACP precipitates can induce the formation of dense and thick silica skins via an additional condensation reaction. Such a phenomenon rationalized the notion concerning a stronger mitigating effect of silica on ACP scaling than gypsum scaling. Meanwhile, coating by silica skins altered the surface chemistries of Ca-based mineral precipitates, which should be fully considered in regulating membrane surface properties for combined scaling control. Our findings advance the mechanistic understanding on combined mineral scaling of RO membranes, and may guide the appropriate design of membrane surface properties for scaling-resistant membrane tailored to brackish water desalination.


Subject(s)
Silicon Dioxide , Water Purification , Calcium , Calcium Sulfate , Salts , Water Purification/methods , Osmosis , Minerals , Saline Waters , Membranes, Artificial
12.
Sci Total Environ ; 891: 164190, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196954

ABSTRACT

The hormetic response of microbes to cadmium (Cd) is often observed in soil, but the mechanisms are unclear. In this study, we proposed a novel perspective of hormesis that successfully explained the temporal hermetic response of soil enzymes and microbes, and the variation of soil physicochemical properties. Several soil enzymatic and microbial activities were stimulated by 0.5 mg·kg-1 exogenous Cd, but inhibited at higher Cd dosages. The phenomena suggested the hormetic response to 0.5 mg·kg-1 Cd was highly generalizable concerning soil enzymes and microbial activity. However, the response disappeared after incubation for >10 days. Soil respiration was also initially enhanced by exogenous Cd and decreased after consumption of labile soil organic matter. The metagenomic results revealed Cd stimulation of genes involved in labile soil organic matter decomposition. Additionally, Cd enriched the antioxidant enzymatic activity and abundances of the corresponding marker genes, rather than genes involved in the efflux-mediated heavy metal resistance. The microbes enhanced their primary metabolism to make up the energy gaps, with hormesis evident. The hormetic response disappeared after the labile compounds in soil were exhausted. Overall, this study illustrates the dose-dependence and temporal variation of stimulants and provides a novel and feasible strategy for the study of Cd in soil microorganisms.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Hormesis , Soil/chemistry , Soil Pollutants/analysis , Soil Microbiology
13.
Huan Jing Ke Xue ; 44(5): 2889-2898, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177960

ABSTRACT

The aim of this study was to explore the effect of P on the physiological mechanism of Cd and As uptake and transport of wheat seedlings. Taking Bainong 207 as the test material, we investigated the effects of exogenous P supply and P deficiency treatment on the growth, root morphology, photosynthetic parameters, antioxidant system, ion content, and rhizome transfer coefficient of wheat seedlings under Cd and As stress using hydroponic experiments. The results showed that compared with that in the P deficiency treatment, the supply of exogenous P significantly increased the chlorophyll content of wheat seedlings under As stress, promoted the growth and development of roots, and increased biomass, whereas there were no significant effects on the growth of wheat seedlings under Cd stress. The contents of P and Cd in the root system under the condition of Cd stress were significantly increased by the supply of exogenous P, and the contents of P and Cd in the aboveground part were reduced. At the same time, the P and As content in the shoot and the transfer coefficient of As from the root to the shoot under As stress were significantly improved. Therefore, the effects of P on the poisoning of wheat Cd and As in this study showed obvious differences. Under As stress, exogenous P supply mainly promoted the growth of wheat seedlings by improving the transport of As from the root to the shoot and the CAT activity in the root system, reducing the poisoning of As in wheat. Under Cd stress, P and Cd showed a certain synergistic effect, and the toxic effect of Cd on wheat was aggravated to a certain extent after the supply of P.


Subject(s)
Seedlings , Soil Pollutants , Triticum , Cadmium/toxicity , Plant Roots , Antioxidants
14.
BMC Plant Biol ; 23(1): 224, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37101116

ABSTRACT

BACKGROUND: Selenium (Se) deficiency causes a series of health disorders in humans, and Se concentrations in the edible parts of crops can be improved by altering exogenous Se species. However, the uptake, transport, subcellular distribution and metabolism of selenite, selenate and SeMet (selenomethionine) under the influence of phosphorus (P) has not been well characterized. RESULTS: The results showed that increasing the P application rate enhanced photosynthesis and then increased the dry matter weight of shoots with selenite and SeMet treatment, and an appropriate amount of P combined with selenite treatment increased the dry matter weight of roots by enhancing root growth. With selenite treatment, increasing the P application rate significantly decreased the concentration and accumulation of Se in roots and shoots. P1 decreased the Se migration coefficient, which could be attributed to the inhibited distribution of Se in the root cell wall, but increased distribution of Se in the root soluble fraction, as well as the promoted proportion of SeMet and MeSeCys (Se-methyl-selenocysteine) in roots. With selenate treatment, P0.1 and P1 significantly increased the Se concentration and distribution in shoots and the Se migration coefficient, which could be attributed to the enhanced proportion of Se (IV) in roots but decreased proportion of SeMet in roots. With SeMet treatment, increasing the P application rate significantly decreased the Se concentration in shoots and roots but increased the proportion of SeCys2 (selenocystine) in roots. CONCLUSION: Compared with selenate or SeMet treatment, treatment with an appropriate amount of P combined with selenite could promote plant growth, reduce Se uptake, alter Se subcellular distribution and speciation, and affect Se bioavailability in wheat.


Subject(s)
Selenium , Humans , Selenium/metabolism , Selenic Acid , Triticum/metabolism , Fertilizers , Phosphorus/metabolism , Selenious Acid/metabolism
15.
Ecotoxicol Environ Saf ; 241: 113834, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36068760

ABSTRACT

Boron (B) is an essential microelement for plant growth and has been shown to reduce cadmium (Cd) toxicity in wheat through modulating gene expression. However, there is not enough information about the effects of different applications of B fertilizer on the accumulation of Cd, particularly throughout the wheat growth period. This experiment employed two different B fertilization methods. The soil application method utilized 1.5 mg B kg-1 soil (Cd+B) and foliar application utilized 0.1% (F0.1%), 0.3% (F0.3%), and 0.6% (F0.6%) B concentrations along with 4 mg kg-1 Cd. The results showed that B application in the soil reduced Cd concentrations per plant by 43.9% at the seedling stage, 74.59% in the roots, and 52.11% in the shoots at the elongation stage. At the same time, Cd concentrations in the roots were higher by B application at the anthesis and maturity stages, suggesting that B retains more Cd in the roots. The gray correlation analysis showed that the gray relational coefficients followed the following order: F0.3% > F0.1% > Cd+B > F0.6%. According to quantitative real-time PCR analysis, the six Cd transporters were mostly expressed in the roots at the seedling stage and anthesis stage. In addition, the expression of TCONS1113, TRIAE1060, and TRIAE5370 showed a negative correlation relationship with Cd concentration at the seedling stage, both in roots and shoots. At the anthesis stage, the expression of TCONS1113 and TRIAE5370 in roots was higher in Cd-treated plants compared to B-treated plants, and a similar tendency was noted for the expression of TRIAE5770 and TRIAE1060 in shoots as well. These results suggest that B application could significantly inhibit Cd uptake and translocation by regulating the expression of Cd transporter genes, especially at the seedling stage and the elongation phase in wheat.


Subject(s)
Cadmium , Soil Pollutants , Boron/analysis , Boron/toxicity , Cadmium/metabolism , Plant Roots/metabolism , Seedlings/metabolism , Soil , Soil Pollutants/analysis , Triticum
16.
Comput Intell Neurosci ; 2022: 2692301, 2022.
Article in English | MEDLINE | ID: mdl-35965772

ABSTRACT

Low-dose CT (LDCT) images can reduce the radiation damage to the patients; however, the unavoidable information loss will influence the clinical diagnosis under low-dose conditions, such as noise, streak artifacts, and smooth details. LDCT image denoising is a significant topic in medical image processing to overcome the above deficits. This work proposes an improved DD-Net (DenseNet and deconvolution-based network) joint local filtered mechanism, the DD-Net is enhanced by introducing improved residual dense block to strengthen the feature representation ability, and the local filtered mechanism and gradient loss are also employed to effectively restore the subtle structures. First, the LDCT image is inputted into the network to obtain the denoised image. The original loss between the denoised image and normal-dose CT (NDCT) image is calculated, and the difference image between the NDCT image and the denoised image is obtained. Second, a mask image is generated by taking a threshold operation to the difference image, and the filtered LDCT and NDCT images are obtained by conducting an elementwise multiplication operation with LDCT and NDCT images using the mask image. Third, the filtered image is inputted into the network to obtain the filtered denoised image, and the correction loss is calculated. At last, the sum of original loss and correction loss of the improved DD-Net is used to optimize the network. Considering that it is insufficient to generate the edge information using the combination of mean square error (MSE) and multiscale structural similarity (MS-SSIM), we introduce the gradient loss that can calculate the loss of the high-frequency portion. The experimental results show that the proposed method can achieve better performance than conventional schemes and most neural networks. Our source code is made available at https://github.com/LHE-IT/Low-dose-CT-Image-Denoising/tree/main/Local Filtered Mechanism.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Radiation Dosage , Tomography, X-Ray Computed/methods
17.
Physiol Behav ; 254: 113889, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35738424

ABSTRACT

PURPOSE: In addition to its toxic effects on the human cardiovascular and respiratory systems, tobacco dependence also causes damage to brain function and cognitive activity. Therefore, the main objective of this study was to investigate the effects of acute aerobic exercise on food-reward function and its food-cued prefrontal brain activation in tobacco-dependent individuals. METHOD: Ninety-three participants who met the study criteria were randomly divided into a moderate-intensity exercise group (65%-75% HRmax), a high-intensity exercise group (75%-85% HRmax), and a quiet control group (n = 31 in each group). Participants were asked to perform a 35-minute target-intensity exercise or rest. The participants took the Leeds Food Preference Questionnaire and the Visual Food Cues Paradigm Task immediately before the experiment and immediately after completing the exercise or control intervention, and oxyhemoglobin concentrations in each prefrontal brain region were measured at the same time as the Visual Food Cues Paradigm Task. RESULTS: Acute aerobic exercise significantly increased implicit cravings for low-calorie sweets in nicotine-dependent individuals (high: p = 0.040; moderate: p = 0.001), while acute moderate-intensity aerobic exercise also significantly increased the activation levels of the left dorsolateral prefrontal cortex (DLPFC: CH15: p = 0.030; CH22: p = 0.003) as well as the left orbitofrontal area (OFC: CH21: p = 0.007) in the food-reward brain region in nicotine-dependent individuals. CONCLUSION: Acute aerobic exercise improves food-reward function and effectively increases activation levels in the DLPFC and OFC cerebral cortex in tobacco-dependent individuals, facilitating restoration of sensitivity to their drug-hijacked natural reward circuits.


Subject(s)
Nicotine , Reward , Exercise/physiology , Food , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/physiology , Smoking
18.
Front Oncol ; 12: 849047, 2022.
Article in English | MEDLINE | ID: mdl-35402272

ABSTRACT

Echinococcosis is a human-animal parasitic disease caused by Echinococcosis tapeworm larvae in humans. From a global perspective, it is mainly prevalent in the mid-high latitudes of the Northern Hemisphere, and it is a widespread infectious disease. Its form, host and release areas are slightly different. In clinical practice, Echinococcus granulosus (hepatic cystic echinococcosis) is the most common. Its growth mode is swelling growth and its metastasis is more common in implanted metastasis; However, hepatic alveolar echinococcosis (HAE) is rare. It has been reported that HAE can metastasize through the blood or lymph nodes, and its invasive growth pattern is known as "carcinoma". At this time, it may be accompanied by invasion of the portal vein and inferior vena cava(IVC)or metastasis to distant organs outside the liver (such as lung, brain, lymph nodes). Most patients are in the middle or late stages, making treatment complicated. World Health Organization guidelines recommend radical resection of HAE; However, there is no consensus on lymph node dissection. To date, there have been no reports of cases of HAE accompanied by inferior vena cava-para-abdominal aortic suspected lymph node metastasis and infection. This article reports a clinical case of a complex HAE treated by the surgical method of "middle liver resection + abdominal enlarged lymph node resection + inferior vena cava repair", and histological examination was performed to illustrate the differences in microscopic pathology of alveolar echinococcosis invading the liver and lymph nodes at different magnifications. This article reviews the relevant literature on HAE and derives the latest treatment methods for HAE to provide a reference for future clinical cases of similar alveolar echinococcosis and maximize the benefits of patients.

19.
Plant Sci ; 318: 111237, 2022 May.
Article in English | MEDLINE | ID: mdl-35351309

ABSTRACT

Screening and breeding of high-Zn-accumulating wheat cultivars have received increasing attention in recent years. However, the exact mechanism of Zn uptake and accumulation in wheat is not fully understood. Here, we investigated the physiological responses and TaZIPs gene expression in a low (Zhengmai0856, ZM0856) and a high (Aikang58, AK58) grain-Zn-accumulating wheat cultivars under hydroponic conditions with different levels of Zn supply. Results showed that AK58 was a Zn sensitive cultivar with better growth advantage, while ZM0856 was a Zn tolerant cultivar with higher capacity of Zn uptake. In addition, gene expression analysis showed that, the expression levels of the TaZIP3, TaZIP5, and TaZIP7 in roots were increased in both cultivars under Zn deficiency. In shoots, TaZIP3 and TaZIP6 transcript accumulation was lower in AK58 than ZM0856, whereas TaZIP7 showed the opposite effect. Moreover, multivariate statistical analysis (Pearson's correlation and PCA) showed that the mechanisms involved in Zn uptake and translocation was closely related to subcellular biosynthesis and ZIP gene expression regulation, whereas adequate Zn supply improved the Zn uptake and root-to-shoot translocation. These novel findings might be helpful for the molecular-assisted selecting and breeding of Zn-rich wheat cultivars.


Subject(s)
Seedlings , Triticum , Edible Grain/genetics , Edible Grain/metabolism , Plant Breeding , Seedlings/metabolism , Triticum/metabolism , Zinc/metabolism
20.
Environ Sci Pollut Res Int ; 29(23): 34701-34713, 2022 May.
Article in English | MEDLINE | ID: mdl-35040057

ABSTRACT

Boron (B) has previously been shown to inhibit cadmium (Cd) uptake in wheat. Here, we investigated the physiological response of external B application (C for no B added, B for B added, B+Cd for B and Cd added, B/Cd for B 24 h pretreatment before Cd added, B and Cd were 46.2 µM and 5 µM, respectively) on wheat growth under Cd stress. The results showed that the wheat growth was significantly weaker under Cd treatment, while B application did not significantly improve the wheat growth under Cd stress. However, B application decreased Cd concentrations and malondialdehyde (MDA) concentrations of shoot and root. The key enzyme activities including superoxide dismutase (SOD) and peroxidase (POD) significantly increased under Cd treatments while decreased under B treatments. Further, a total of 198, 680 and 204 of the differential metabolites were isolated between B and C treatment, Cd and C treatment and B+Cd and Cd treatment, respectively. The metabolites with up-accumulation in B application (B+Cd) roots were mainly galactaric acid, citric acid, N6-galacturonyl-L-lysine, D-glucose, while the metabolites with down-accumulation were mainly threoninyl-tryptophan and C16 sphinganine. The differential metabolic pathways were mainly concentrated in linoleic acid metabolism, galactose metabolism, sphingolipid metabolism, glycolysis/gluconeogenesis, propanoate metabolism in diabetic complications between B+Cd treatment and B treatment. The results indicate that B alleviates Cd toxicity in winter wheat by inhibiting Cd uptake, increasing antioxidant enzyme activity and changing metabolites.


Subject(s)
Cadmium , Soil Pollutants , Antioxidants/metabolism , Boron/metabolism , Cadmium/analysis , Plant Roots/metabolism , Seedlings/metabolism , Soil Pollutants/metabolism , Superoxide Dismutase/metabolism , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL
...