Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Respir Care ; 69(5): 549-556, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38167213

ABSTRACT

BACKGROUND: Three-dimensional (3D)-printed models are cost-effective and can be customized by trainers. This study designed a 3D-printed airway suction simulator for use by respiratory therapy (RT) students. The objective was to demonstrate the cost-effectiveness and application of 3D-printed models in respiratory care training, aiming to enhance the educational experience for RT students. METHODS: This study developed a 3D-printed airway suction simulator that was cost-effective. A randomized controlled trial was conducted involving RT students to compare effectiveness in a 3D-model group and a control group. Skill assessments and written examinations were used to evaluate the participants' knowledge and skills. RESULTS: A total of 38 second-year RT students were randomly assigned to either the 3D-model group (n = 19) or the control group (n = 19). One participant in the 3D-model group was lost to follow-up during the planned direct observation of procedural skills (DOPS) assessment and satisfaction questionnaire completion. The posttest written examination scores were significantly higher in the 3D-model group than in the control group (100% vs 80%, P = .02). The scores from the DOPS and satisfaction questionnaire were comparable in the 2 groups. CONCLUSIONS: This study demonstrated that 3D printing can be used to create a safe and cost-effective airway suction simulator for use by RT students, with potential to enhance training methods. Further research is necessary.

2.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955581

ABSTRACT

A gelatin-based hydrogel scaffold with highly uniform pore size and biocompatibility was fabricated for cartilage tissue engineering using microfluidic 3D-foaming technology. Mainly, bubbles with different diameters, such as 100 µm and 160 µm, were produced by introducing an optimized nitrogen gas and gelatin solution at an optimized flow rate, and N2/gelatin bubbles were formed. Furthermore, a cross-linking agent (1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide, EDC) was employed for the cross-linking reaction of the gelatin-based hydrogel scaffold with uniform bubbles, and then the interface between the close cells were broken by degassing. The pore uniformity of the gelatin-based hydrogel scaffolds was confirmed by use of a bright field microscope, conjugate focus microscope and scanning electron microscope. The in vitro degradation rate, mechanical properties, and swelling rate of gelatin-based hydrogel scaffolds with highly uniform pore size were studied. Rabbit knee cartilage was cultured, and its extracellular matrix content was analyzed. Histological analysis and immunofluorescence staining were employed to confirm the activity of the rabbit knee chondrocytes. The chondrocytes were seeded into the resulting 3D porous gelatin-based hydrogel scaffolds. The growth conditions of the chondrocyte culture on the resulting 3D porous gelatin-based hydrogel scaffolds were evaluated by MTT analysis, live/dead cell activity analysis, and extracellular matrix content analysis. Additionally, a dynamic culture of cartilage tissue was performed, and the expression of cartilage-specific proteins within the culture time was studied by immunofluorescence staining analysis. The gelatin-based hydrogel scaffold encouraged chondrocyte proliferation, promoting the expression of collagen type II, aggrecan, and sox9 while retaining the structural stability and durability of the cartilage after dynamic compression and promoting cartilage repair.


Subject(s)
Gelatin , Tissue Engineering , Animals , Biocompatible Materials/chemistry , Cartilage , Cells, Cultured , Chondrocytes/metabolism , Gelatin/chemistry , Hydrogels/chemistry , Microfluidics , Porosity , Rabbits , Tissue Engineering/methods , Tissue Scaffolds/chemistry
3.
Front Bioeng Biotechnol ; 10: 816664, 2022.
Article in English | MEDLINE | ID: mdl-35356778

ABSTRACT

Osteoarthritis (OA) is a chronic disease caused by the damage of articular cartilage. Kartogenin (KGN) is a well-recognized small molecule which could induce MSCs chondrogenesis and promote cartilage repair treatments. Nano-level micells could be a suitable drug carrier technology for the treatments. In this study, the acid-responsive methoxy poly(ethylene oxide)-hydrazone-poly(ε-caprolactone) copolymers, mPEG-Hz-b-PCL, were synthesized. The structure was characterized by 1H NMR. The evaluation of a designed kartogenin drug delivery system (DDS) of hydrazone-linkage-based pH responsive mPEG-Hz-b-PCL nanomicelles for treatment of osteoarthritis could be carried out.

4.
Polymers (Basel) ; 13(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34960876

ABSTRACT

Nano-bioscaffolds obtained from decellularized tissues have been employed in several medical applications. Nano-bioscaffolds could provide structural support for cell attachment and a suitable environment with sufficient porosity for cell growth and proliferation. In this study, a new combined method constitutes a decellularization protocol to remove the tissue and cellular molecules from porcine dermis for preparation of nano-bioscaffolds with fibrous extracellular matrix via pre- and post-treatment of supercritical fluids. The supercritical fluids-assisted nano-bioscaffolds were characterized by peptide identification, infrared spectrum of absorption, morphology, histological observations, DNA quantification, and hemocompatibility. Further, the resulting nano-bioscaffolds could be employed to obtain new cross-linked composite nano-bioscaffold containing collagen and acellular matrix.

5.
Polymers (Basel) ; 13(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34833312

ABSTRACT

This article presents, for the first time, the kinetics and the general features of a photopolymerization system (under visible light), copper-complex/Iodonium/triethylamine/gold-chloride (orA/B/N/G), with initial concentrations of A0, B0, N0 and G0, based on the proposed mechanism of Tar et al. Analytic formulas were developed to explore the new features, including: (i) both free radical photopolymerization (FRP) efficacy and the production of nanogold (NG), which are proportional to the relative concentration ratios of (A0 + B0 + N0)/G0 and may be optimized for maximum efficacy; (ii) the two competing procedures of NG production and the efficacy of FRP, which can be tailored for an optimal system with nanogold in the polymer matrix; (iii) the FRP efficacy, which is contributed by three components given by the excited state of copper complex (T), and the radicals (R and S) produced by iodonium and amine, respectively; (iv) NG production, which is contributed by the coupling of T and radical (S) with gold ion; and (v) NG production, which has a transient state proportional to the light intensity and the concentration ratio A0/G0) + (N0/(K'M0), but also a steady-state independent of the light intensity.

6.
Front Chem ; 7: 760, 2019.
Article in English | MEDLINE | ID: mdl-31799237

ABSTRACT

Kinetic equations for a modeling system with type-I radical-mediated and type-II oxygen-mediated pathways are derived and numerically solved for the photopolymerization efficacy and curing depth, under the quasi-steady state assumption, and bimolecular termination. We show that photopolymerization efficacy is an increasing function of photosensitizer (PS) concentration (C 0) and the light dose at transient state, but it is a decreasing function of the light intensity, scaled by [C 0/I 0]0.5 at steady state. The curing (or cross-link) depth is an increasing function of C 0 and light dose (time × intensity), but it is a decreasing function of the oxygen concentration, viscosity effect, and oxygen external supply rate. Higher intensity results in a faster depletion of PS and oxygen. For optically thick polymers (>100 um), light intensity is an increasing function of time due to PS depletion, which cannot be neglected. With oxygen inhibition effect, the efficacy temporal profile has an induction time defined by the oxygen depletion rate. Efficacy is also an increasing function of the effective rate constant, K = k'/ k T 0 . 5 , defined by the radical producing rate (k') and the bimolecular termination rate (k T). In conclusion, the curing depth has a non-linear dependence on the PS concentration, light intensity, and dose and a decreasing function of the oxygen inhibition effect. Efficacy is scaled by [C 0/I 0]0.5 at steady state. Analytic formulas for the efficacy and curing depth are derived, for the first time, and utilized to analyze the measured pillar height in microfabrication. Finally, various strategies for improved efficacy and curing depth are discussed.

7.
Polymers (Basel) ; 11(11)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698682

ABSTRACT

The kinetics and modeling of dual-wavelength (UV and blue) controlled photopolymerization confinement (PC) are presented and measured data are analyzed by analytic formulas and numerical data. The UV-light initiated inhibition effect is strongly monomer-dependent due to different C=C bond rate constants and conversion efficacies. Without the UV-light, for a given blue-light intensity, higher initiator concentration (C10) and rate constant (k') lead to higher conversion, as also predicted by analytic formulas, in which the total conversion rate (RT) is an increasing function of C1 and k'R, which is proportional to k'[gB1C1]0.5. However, the coupling factor B1 plays a different role that higher B1 leads to higher conversion only in the transient regime; whereas higher B1 leads to lower steady-state conversion. For a fixed initiator concentration C10, higher inhibitor concentration (C20) leads to lower conversion due to a stronger inhibition effect. However, same conversion reduction was found for the same H-factor defined by H0 = [b1C10 - b2C20]. Conversion of blue-only are much higher than that of UV-only and UV-blue combined, in which high C20 results a strong reduction of blue-only-conversion, such that the UV-light serves as the turn-off (trigger) mechanism for the purpose of spatial confirmation within the overlap area of UV and blue light. For example, UV-light controlled methacrylate conversion of a glycidyl dimethacrylate resin is formulated with a tertiary amine co-initiator, and butyl nitrite. The system is subject to a continuous exposure of a blue light, but an on-off exposure of a UV-light. Finally, we developed a theoretical new finding for the criterion of a good material/candidate governed by a double ratio of light-intensity and concentration, [I20C20]/[I10C10].

8.
Polymers (Basel) ; 11(10)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658683

ABSTRACT

Kinetics and analytical formulas for radical-mediated thiol-ene photopolymerization were developed in this paper. The conversion efficacy of thiol-ene systems was studied for various propagation to chain transfer kinetic rate-ratio (RK), and thiol-ene concentration molar-ratio (RC). Numerical data were analyzed using analytical formulas and compared with the experimental data. We demonstrated that our model for a thiol-acrylate system with homopolymerization effects, and for a thiol-norbornene system with viscosity effects, fit much better with the measured data than a previous model excluding these effects. The general features for the roles of RK and RC on the conversion efficacy of thiol (CT) and ene (CV) are: (i) for RK = 1, CV and CT have the same temporal profiles, but have a reversed dependence on RC; (ii) for RK >> 1, CT are almost independent of RC; (iii) for RK << 1, CV and CT have the same profiles and both are decreasing functions of the homopolymerization effects defined by kCV; (iv) viscosity does not affect the efficacy in the case of RK >> 1, but reduces the efficacy of CV for other values of RK. For a fixed light dose, higher light intensity has a higher transient efficacy but a lower steady-state conversion, resulting from a bimolecular termination. In contrast, in type II unimolecular termination, the conversion is mainly governed by the light dose rather than its intensity. For optically thick polymers, the light intensity increases with time due to photoinitiator depletion, and thus the assumption of constant photoinitiator concentration (as in most previous models) suffers an error of 5% to 20% (underestimated) of the crosslink depth and the efficacy. Scaling law for the overall reaction order, defined by [A]m[B]n and governed by the types of ene and the rate ratio is discussed herein. The dual ratio (RK and RC) for various binary functional groups (thiol-vinyl, thiol-acrylate, and thiol-norbornene) may be tailored to minimize side effects for maximal monomer conversion or tunable degree of crosslinking.

9.
Technol Health Care ; 27(S1): 153-163, 2019.
Article in English | MEDLINE | ID: mdl-31045535

ABSTRACT

BACKGROUND: Wet age-related macular degeneration (Wet AMD) has been treated clinically by intravitreal injection of bevacizumab, which is a kind of the anti-VEGF antibody drug. Nevertheless, because of the short half-life and frequent injections, the use of this treatment is limited. OBJECTIVE: To confirm whether mPEG-PLGA-BOX can be considered as a VEGF drug delivery system to inhibit retinal angiogenesis. METHODS: A thermo-responsive hydrogel of methoxy-poly (ethylene glycol)-block-poly (lactic-co-glycolic acid) (mPEG-PLGA-BOX) was synthesized. The thermo-responsive hydrogel mPEG-PLGA-BOX was able to have sol-gel phase transition upon stimulation by the body temperature with improved biocompatibility and biodegradation. The bevacizumab released from mPEG-PLGA-BOX inhibited RF/6A cells according to a JC-1 assay, which indicated that the released bevacizumab was active to be able to suppress the growth of new blood vessels. In an animal study, retinal laser photocoagulation was performed to induce angiogenesis in the eyes of Rex rabbits using an 810-mm laser. RESULTS: The retina was penetrated when the laser power was more than 500 mW and the exposure time was more than 500 ms. New blood vessels were created at the 28th day after retinal laser photocoagulation. At this time, intravitreal 0.05-mL injections of mPEG-PLGA-BOX (bevacizumab) solution were administered. The bevacizumab released from mPEG-PLGA-BOX (bevacizumab) solution suppressed the angiogenesis. In an in vivo study, the histomorphology of the rabbit retina also indicated that mPEG-PLGA-BOX after intravitreal injection is not toxic to the rabbit retina. CONCLUSIONS: Bevacizumab released from mPEG-PLGA-BOX (bevacizumab) solution suppressed angiogenesis, and mPEG-PLGA-BOX can be considered as a novel thermo-responsive hydrogel with potential as a gelling carrier for extended bevacizumab drug release to treat intraocular neovascular diseases.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Drug Delivery Systems , Lactates/administration & dosage , Neovascularization, Pathologic/prevention & control , Polyethylene Glycols/administration & dosage , Retina/drug effects , Vascular Endothelial Growth Factor A/administration & dosage , Animals , Bevacizumab/administration & dosage , Hydrogels , Rabbits
10.
Polymers (Basel) ; 11(2)2019 Jan 27.
Article in English | MEDLINE | ID: mdl-30960200

ABSTRACT

Optimal conditions for maximum efficacy of photoinitiated polymerization are theoretically presented. Analytic formulas are shown for the crosslink time, crosslink depth, and efficacy function. The roles of photoinitiator (PI) concentration, diffusion depth, and light intensity on the polymerization spatial and temporal profiles are presented for both uniform and non-uniform cases. For the type I mechanism, higher intensity may accelerate the polymer action process, but it suffers a lower steady-state efficacy. This may be overcome by a controlled re-supply of PI concentration during the light exposure. In challenging the conventional Beer⁻Lambert law (BLL), a generalized, time-dependent BLL (a Lin-law) is derived. This study, for the first time, presents analytic formulas for curing depth and crosslink time without the assumption of thin-film or spatial average. Various optimal conditions are developed for maximum efficacy based on a numerically-fit A-factor. Experimental data are analyzed for the role of PI concentration and light intensity on the gelation (crosslink) time and efficacy.

11.
J Orthop Surg Res ; 13(1): 259, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30340603

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a slow progressing, degenerative disorder of the synovial joints. Guilu Erxian Glue (GEG) is a multi-component Chinese herbal remedy with long-lasting favorable effects on several conditions, including articular pain and muscle strength in elderly men with knee osteoarthritis. The present study aimed to identify the effects of Guilu Erxian Paste (GE-P) and Liquid (GE-L) extracted from Guilu Erxian Glue in anterior cruciate ligament transection (ACLT)-induced osteoarthritis mice, and to compare the effectiveness of different preparations on knee cartilage degeneration during the progression of osteoarthritis. METHODS: Male C57BL/6J mice underwent anterior cruciate ligament transection to induce mechanically destabilized osteoarthritis in the right knee. 4 weeks later, the mice were orally treated with PBS, celecoxib (10 mg/kg/day), Guilu Erxian Paste (100 or 300 mg/kg/day), and Guilu Erxian Liquid (100 or 300 mg/kg/day) for 28 consecutive days. Von Frey and open-field tests (OFT) were used to evaluate pain behaviors (mechanical hypersensitivity and locomotor performance). Narrowing of the joint space and osteophyte formation were examined radiographically. Inflammatory cytokine (IL-1ß, IL-6, and TNF-α) levels in the articular cartilage were determined by quantitative real-time PCR. Histopathological examinations were conducted to evaluate the severity and extent of the cartilage lesions. RESULTS: Guilu Erxian Paste and Guilu Erxian Liquid (300 mg/kg/day) were significantly more effective (p < 0.01) than celecoxib (10 mg/kg/day) in decreasing secondary allodynia when compared to the saline-treated group (#p < 0.05). Open-field tests revealed no significant motor dysfunction between the Guilu Erxian Paste- and Guilu Erxian Liquid-treated mice compared to the saline-treated mice. Radiographic findings also confirmed that the administration of Guilu Erxian Paste and Guilu Erxian Liquid (100 and 300 mg/kg/day) significantly and dose-dependently reduced osteolytic lesions and bone spur formation in the anterior cruciate ligament transection-induced osteoarthritis mice when compared to the saline-treated group. Notably, Guilu Erxian Liquid (100 mg/kg/day) treatment significantly reduced the mRNA levels of IL-1ß, IL-6, and TNF-α as well as relative the protein expression of IL-1ß and TNF-α to the effect of celecoxib. Guilu Erxian Paste and Guilu Erxian Liquid (300 mg/kg/day) markedly attenuated cartilage destruction, surface unevenness, proteoglycan loss, chondrocyte degeneration, and cartilage erosion in the superficial layers (##p < 0.01 and ###p < 0.001 respectively). CONCLUSIONS: As expected, our findings suggest that the anti-inflammatory effects of Guilu Erxian Liquid (GE-L), following marked decrease on both IL-1ß and TNF-α during the early course of post-traumatic osteoarthrosis (OA), may be of potential value in the treatment of osteoarthritis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis, Experimental/drug therapy , Drugs, Chinese Herbal/therapeutic use , Osteoarthritis/drug therapy , Animals , Arthritis, Experimental/diagnostic imaging , Arthritis, Experimental/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cytokines/biosynthesis , Cytokines/genetics , Disease Progression , Drug Evaluation, Preclinical/methods , Gene Expression Regulation/drug effects , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Osteoarthritis/diagnostic imaging , Osteoarthritis/pathology , Osteolysis/diagnostic imaging , Osteolysis/drug therapy , Radiography
12.
Int J Mol Sci ; 17(9)2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27649140

ABSTRACT

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM). Inonotus obliquus (IO) is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs) have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ)-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP), from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD) plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10-100 kDa, LIOP (300 mg/kg) had progressively increased their sensitivity to glucose (less insulin tolerance), reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR) compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-ß on renal cortex in mice. Consistently, three days of LIOP (100 µg/mL) incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1), while the levels of NF-κB and TGF-ß expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF-κB/TGF-ß1 signaling pathway in diabetic nephropathy mice.


Subject(s)
Agaricales/metabolism , Diabetic Nephropathies/drug therapy , Diet, High-Fat/adverse effects , Fungal Polysaccharides/administration & dosage , Streptozocin/adverse effects , Animals , Cell Survival , Cells, Cultured , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Fruiting Bodies, Fungal/metabolism , Fungal Polysaccharides/pharmacology , Gene Expression Regulation/drug effects , Insulin/blood , Mesangial Cells/cytology , Mesangial Cells/drug effects , Mice , Molecular Weight , Transforming Growth Factor beta/metabolism , Triglycerides/metabolism
13.
Int J Mol Sci ; 16(10): 23318-36, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26426006

ABSTRACT

Regenerative medicine is increasingly important in clinical practice. Ligamentum flava (LF) are typically removed during spine-related surgeries. LF may be a source of cells for spinal fusion that is conducted using tissue engineering techniques. In this investigation, LF cells of rabbits were isolated and then characterized by flow cytometry, morphological observation, and immunofluorescence staining. The LF cells were also cultivated in polyethylene (glycol) diacrylate (PEGDA) hydrogels that incorporated bone morphogenetic protein-2 (BMP-2) growth factor, to evaluate their proliferation and secretion of ECM and differentiation in vitro. The experimental results thus obtained that the proliferation, ECM secretion, and differentiation of the PEGDA-BMP-2 group exceeded those of the PEGDA group during the period of cultivation. The mineralization and histological staining results differed similarly. A nude mice model was utilized to prove that LF cells on hydrogels could undergo osteogenic differentiation in vivo. These experimental results also revealed that the PEGDA-BMP-2 group had better osteogenic effects than the PEGDA group following a 12 weeks after transplantation. According to all of these experimental results, LF cells are a source of cells for spinal fusion and PEGDA-BMP-2 hydrogel is a candidate biomaterial for spinal fusion by tissue engineering.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Ligamentum Flavum/cytology , Light , Osteogenesis/drug effects , Spinal Fusion , Animals , Cell Proliferation/drug effects , Cell Shape/drug effects , Cells, Cultured , Flow Cytometry , Gene Expression Regulation/drug effects , Male , Mice, Nude , Osteogenesis/genetics , Rabbits
14.
Biomed Mater Eng ; 26 Suppl 1: S139-45, 2015.
Article in English | MEDLINE | ID: mdl-26405901

ABSTRACT

Caused by acute radiation skin reaction and injury, receiving radiotherapy treatment process is often performed side-effects on cancer patients. The clinical manifestations of skin irritation, itching, peeling, pigmentation, ulcer bleeding and other symptoms, in addition to causing patient discomfort and affecting quality of life, may increase the risk of local or systemic infection, and lead to interruption of radiation therapy. At present, for acute radiation dermatitis, there is no uniform treatment, and the various methods are evaluated variously. In this study, the authors focus on broken pearls using room temperature super extraction system, the water extraction process of wet-grinding method, nano-scale pearl, along with a large number of high purity natural amino acid extracts in the water. The room-temperature super-extraction system (RTSES) can be extracted from a relatively high-volume of pearl extract. We use pearl extract as the main component of experimental material, and the blending of pearl extract and poly (γ-glutamic acid) is used to form biodegradable composite hydrogels. This study aims to evaluate the use of RTSES to extract the major active components of pearl and enhance their anti-inflammation and anti-apoptosis effects. The possible effect of pearl extract on inducing apoptosis in human keratinocyte cells (HaCaT) under the exposure of low dose UVB has been investigated. Various concentrations of pearl extracts have been used to study the effect of low dosage UVB on HaCaT cells. The results show that pearl extract has no toxic effect on HaCaT cells. Combining the pearl extract and poly (γ-glutamic acid) hydrogels with UVB irradiation would decrease the inflammation and apoptosis of HaCaT cells. The commercial pearl extract has the potential to inhibit radiation dermatitis occurring within keratinocyte cells.


Subject(s)
Animal Shells/chemistry , Apoptosis/drug effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Mollusca/chemistry , Tissue Extracts/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Apoptosis/physiology , Apoptosis/radiation effects , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Cell Survival/radiation effects , Gels/chemistry , Humans , Keratinocytes/physiology , Reactive Oxygen Species/metabolism , Treatment Outcome , Ultraviolet Rays/adverse effects
15.
Biomed Mater Eng ; 26 Suppl 1: S95-102, 2015.
Article in English | MEDLINE | ID: mdl-26406097

ABSTRACT

A new fabrication process for designing nerve conduits with a porous ionic cross-linked alginate/chitosan composite for nervous regeneration could be prepared. New designed nerve conduits with a porous ionic cross-linked alginate/chitosan composite were developed for nervous regeneration. Nerve conduits (NCs) represent a promising alternative to conventional treatments for peripheral nerve repair. NCs composed of various polysaccharides such as sodium alginate were designed and prepared by lyophilization as potential matrices for tissue engineering. The use of a porous ionic cross-linked alginate/chitosan composite could provide penetration channels that would lead to the products' increasing penetration rate properties. Furthermore, the use of a porous ionic cross-linked alginate/chitosan composite also has a highly cross-linked structure, which would give the products relatively good mechanical properties. Furthermore, the drug could be incorporated into nerve conduits as a new drug-carrying system for nerve regeneration because of its porous and cross-linked structures.


Subject(s)
Absorbable Implants , Alginates/chemistry , Chitosan/chemistry , Guided Tissue Regeneration/instrumentation , Nerve Regeneration/physiology , Peripheral Nerves/growth & development , Animals , Cross-Linking Reagents/chemistry , Equipment Failure Analysis , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Ions , Materials Testing , Porosity , Prosthesis Design , Tissue Scaffolds
16.
Biomed Mater Eng ; 24(6): 1941-50, 2014.
Article in English | MEDLINE | ID: mdl-25226890

ABSTRACT

Age-related macular degeneration (ARMD) and intraocular neovascular diseases have been treated clinically by anti-VEGF antibody drug bevacizumab. However, the use of bevacizumab in the treatment of retinal neovascular diseases has been limited due to the short half-life and frequent injections. In this research, novel amphiphilic hydrophilic-hydrophobic block copolymers of methoxy-poly (ethylene glycol)-block-poly (lactic-co-glycolic acid) were synthesized with ring-opening polymerization, and cross-linked with 2,2-bis (2-oxazoline) (BOX). The aqueous solution of the block copolymers can reverse the sol-gel-sol phase transition. After 1 month of intravitreal injection, the histomorphology of a rabbit's retina was preserved, which indicated the mPEG-PLGA-BOX hydrogel had no cytotoxicity in vivo. Released bevacizumab from the mPEG-PLGA-BOX hydrogel inhibited the RF/6A (Maraca mulatta retina epithelial cell) and HUVEC cell growth, and anti-angiogenesis in 3-D cultures, which showed the bioactivity of the anti-VEGF agent, were maintained in the hydrogel within the release process. In conclusion, the mPEG-PLGA-BOX hydrogel had a sol-gel behavior phase transition, and its intraocular biocompatibility and the characteristics of biodegradability and bioactivity appear to be a promising intravitreal injection carrier for bevacizumab delivery.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Choroidal Neovascularization/drug therapy , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemical synthesis , Hydrogels/chemical synthesis , Neovascularization, Pathologic/drug therapy , Absorption, Physicochemical , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/chemistry , Animals , Bevacizumab , Choroidal Neovascularization/pathology , Diffusion , Hot Temperature , Humans , Neovascularization, Pathologic/pathology , Rabbits , Temperature , Treatment Outcome
17.
Biomed Mater Eng ; 24(6): 1959-67, 2014.
Article in English | MEDLINE | ID: mdl-25226892

ABSTRACT

The small intestinal submucosa (SIS) is an acellular collagen-based matrix, primarily composed of fibrillar collagens (types I, II, and V). They enhance healing due to a minimal immune response. A good degradation rate is the degradation of materials equal to the rate of remodeling in the host. The SIS should apply a good degradation rate and cytocompatibility. In this study, a series of SIS with different degradation rates is obtained by treatment with Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Morphology, composition, degradable ratio, mechanical properties and cytocompatibility of the SIS are evaluated. We determined a 20 µm thickness and 60 µm pore size of the native SIS. The degradable ratio of the native SIS was approximately 90% in the presence of 0.25 mg/ml collagenase for 24 hours. The storage modulus of the native SIS was 388 MPa. The degradable ratio of the SIS decreased to 6% and the storage modulus increased to 777 MPa after being treated with 30 mM EDC for 24 hours. In cytocompatibility assay, cell numbers on the native SIS were similar as on the treated SIS due to the non-toxicity of the EDC treatment process. This SIS exhibited collagenase resistance, stronger mechanical strength and good cytocompatibility after the EDC treatment concluded. The cross-linked SIS could be utilized as a potential cell carrier for tissue engineering application.


Subject(s)
Absorbable Implants , Carbodiimides/chemistry , Fibroblasts/cytology , Fibroblasts/physiology , Intestinal Mucosa/chemistry , Intestinal Mucosa/cytology , Tissue Scaffolds , Animals , Cell Adhesion , Cell Differentiation , Cell Line , Cell Movement , Cell Proliferation , Cross-Linking Reagents/chemistry , Equipment Failure Analysis , Materials Testing , Mice , Prosthesis Design , Rabbits , Swine , Tensile Strength
18.
Biomed Mater Eng ; 24(6): 2081-8, 2014.
Article in English | MEDLINE | ID: mdl-25226905

ABSTRACT

A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.


Subject(s)
Acrylates/chemistry , Adhesives/chemistry , Bandages , Colloids/chemistry , Delayed-Action Preparations/chemical synthesis , Membranes, Artificial , Water/chemistry , Adhesiveness , Adsorption , Animals , Equipment Design , Equipment Failure Analysis , Humans , Materials Testing , Permeability , Polyurethanes/chemistry , Wound Healing/physiology
19.
Biomed Mater Eng ; 24(6): 2065-72, 2014.
Article in English | MEDLINE | ID: mdl-25226903

ABSTRACT

Hydroxypropyl methylcellulose (HPMC) was employed in this study to design controllable drug release systems because of its non-toxic nature, swelling properties. New interpenetrating polymer networks (IPN) of HPMC / tri-isocyanate crosslinked polyurethane (TCPU) could be prepared on the surfaces of IPN materials. To design "Novel Drug-carrying Matrix Systems", incorporation of novel structure is important to the possible formation of drug-carrying spaces within the material, which was achieved by using Tris (6-isocyanatohexyl) isocyanurate with three soft hexyl arms in this study. A series of novel drug-carrying matrix systems prepared by crosslinking reaction could be candidates for an excellent and smart potential material. When the polymeric networks were established on the surfaces of resulting materials, the developed hydrophilic interpenetrating polymeric structures of HPMC/ polyurethane could provide good wettability to the wound dressings, particularly for moisture healing application. The materials containing HPMC/polyurethane networks using 1% cross-linking agent showed a water uptake value of 5.1% after one hour, which has great potential for use as wound dressings for moisture healing. Furthermore, a new drug delivery system of hydrophilic IPN was successfully designed and established.


Subject(s)
Colloids/chemical synthesis , Delayed-Action Preparations/chemistry , Hypromellose Derivatives/chemistry , Triazines/chemistry , Absorption, Physicochemical , Cross-Linking Reagents/chemistry , Diffusion , Drug Compounding/methods , Drug Design , Hydrophobic and Hydrophilic Interactions , Materials Testing
20.
Biomed Mater Eng ; 24(1): 757-62, 2014.
Article in English | MEDLINE | ID: mdl-24211961

ABSTRACT

New designed combined products and its determination for pain management and cancer treatment were studied. A rapid and sensitive stability indicating HPLC method had been developed and validated for the determination of Indomethacin(IDM) in a transdermal patch. This analytical method was successfully applied to the determination of Indomethacin in a transdermal patch and can be used for routine quality control analysis. Chromatographic separation was achieved isocratically on an Inertsil® C8-3 column utilizing a mobile phase of acetonitrile / 0.01 M monobasic sodium phosphate and 0.01 M dibasic sodium phosphate buffer (pH 3) (65:35, v/v) at the flow rate of 1 mL/min with UV detection at the wavelength of 210 nm. The system suitability was performed, and the result showed that Indomethacin(IDM) and its impurity were separated. The calibration curve of Indomethacin(IDM) was linear in the range of 0.1~15 ppm (r = 0.9989, n = 3).


Subject(s)
Analgesics/administration & dosage , Antineoplastic Agents/administration & dosage , Delayed-Action Preparations , Indomethacin/administration & dosage , Neoplasms/drug therapy , Pain Management/methods , Calibration , Calorimetry, Differential Scanning , Chromatography, High Pressure Liquid , Drug Delivery Systems , Humans , Hydrogen-Ion Concentration , Models, Chemical , Polymers/chemistry , Quality Control , Solubility , Spectroscopy, Fourier Transform Infrared , Temperature , Transdermal Patch
SELECTION OF CITATIONS
SEARCH DETAIL
...