Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Viruses ; 15(12)2023 11 28.
Article in English | MEDLINE | ID: mdl-38140579

ABSTRACT

Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by the SFTS Virus (SFTSV), is a global health threat. SFTSV in Taiwan has only been reported in ruminants and wild animals. Thus, we aimed to investigate the infection statuses of dogs and cats, the animals with closer human interactions. Overall, the SFTSV RNA prevalence was 23% (170/735), with dogs showing a 25.9% (111/429) prevalence and cats at 19.3% (59/306) prevalence. Noticeably, the prevalence in stray animals (39.8% 77/193) was significantly higher than in domesticated ones (17.2%, 93/542). Among the four categories analyzed, the highest SFTSV prevalence was found in the stray dogs at 53.9% (120/193), significantly higher than the 24.2% prevalence noted in stray cats. In contrast, domesticated animals exhibited similar prevalence rates, with 17.1% for dogs and 17.2% for cats. It is noteworthy that in the domesticated animal groups, a significantly elevated prevalence (45%, 9/20) was observed among cats exhibiting thrombocytopenia compared to those platelet counts in the reference range (4.8%, 1/21). The high infection rate in stray animals, especially stray dogs, indicated that exposure to various outdoor environments influences the prevalence of infections. Given the higher human interaction with dogs and cats, there is a need for proactive measures to reduce the risk associated with the infection of SFTSV in both animals and humans.


Subject(s)
Bunyaviridae Infections , Cat Diseases , Dog Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Cats , Humans , Dogs , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Taiwan/epidemiology , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Phlebovirus/genetics , Animals, Wild , Animals, Domestic
2.
Int J Biol Sci ; 18(1): 331-348, 2022.
Article in English | MEDLINE | ID: mdl-34975336

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by muscularized pulmonary blood vessels, leading to right heart hypertrophy and cardiac failure. However, state-of-the-art therapeutics fail to target the ongoing remodeling process. Here, this study shows that matrix metalloproteinases (MMP)-1 and MMP-10 levels are increased in the medial layer of vessel wall, serum, and M1-polarized macrophages from patients with PAH and the lungs of monocrotaline- and hypoxia-induced PAH rodent models. MMP-10 regulates the malignant phenotype of pulmonary artery smooth muscle cells (PASMCs). The overexpression of active MMP-10 promotes PASMC proliferation and migration via upregulation of cyclin D1 and proliferating cell nuclear antigen, suggesting that MMP-10 produced by infiltrating macrophages contributes to vascular remodeling. Furthermore, inhibition of STAT1 inhibits hypoxia-induced MMP-10 but not MMP-1 expression in M1-polarized macrophages from patients with PAH. In conclusion, circulating MMP-10 could be used as a potential targeted therapy for PAH.


Subject(s)
Macrophages/metabolism , Matrix Metalloproteinase 10/metabolism , Matrix Metalloproteinase 1/metabolism , Pulmonary Arterial Hypertension/metabolism , Vascular Remodeling , Adult , Aged , Animals , Cell Movement , Cell Proliferation , Disease Models, Animal , Female , Humans , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Rats , Up-Regulation
3.
Animals (Basel) ; 11(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34827943

ABSTRACT

Goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) are the main agents associated with waterfowl parvovirus infections that caused great economic losses in the waterfowl industry. In 2020, a recombinant waterfowl parvovirus, 20-0910G, was isolated in a goose flock in Taiwan that experienced high morbidity and mortality. The whole genome of 20-0910G was sequenced to investigate the genomic characteristics of this isolate. Recombination analysis revealed that, like Chinese rMDPVs, 20-0910G had a classical MDPV genomic backbone and underwent two recombination events with classical GPVs at the P9 promoter and partial VP3 gene regions. Phylogenetic analysis of the genomic sequence found that this goose-origin parvovirus was highly similar to the circulating recombinant MDPVs (rMDPVs) isolated from duck flocks in China. The results of experimental challenge tests showed that 20-0910G caused 100% mortality in goose embryos and in 1-day-old goslings by 11 and 12 days post-inoculation, respectively. Taken together, the results indicated that this goose-origin rMDPV was closely related to the duck-origin rMDPVs and was highly pathogenic to young geese.

4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206460

ABSTRACT

Clozapine is widely employed in the treatment of schizophrenia. Compared with that of atypical first-generation antipsychotics, atypical second-generation antipsychotics such as clozapine have less severe side effects and may positively affect obesity and blood glucose level. However, no systematic study of clozapine's adverse metabolic effects-such as changes in kidney and liver function, body weight, glucose and triglyceride levels, and retinopathy-was conducted. This research investigated how clozapine affects weight, the bodily distribution of chromium, liver damage, fatty liver scores, glucose homeostasis, renal impairment, and retinopathy in mice fed a high fat diet (HFD). We discovered that obese mice treated with clozapine gained more weight and had greater kidney, liver, and retroperitoneal and epididymal fat pad masses; higher daily food efficiency; higher serum or hepatic triglyceride, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels; and higher hepatic lipid regulation marker expression than did the HFD-fed control mice. Furthermore, the clozapine group mice exhibited insulin resistance, poorer insulin sensitivity, greater glucose intolerance, and less Akt phosphorylation; their GLUT4 expression was lower, they had renal damage, more reactive oxygen species, and IL-1 expression, and, finally, their levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were lower. Moreover, clozapine reduced the thickness of retinal cell layers and increased iNOS and NF-κB expression; a net negative chromium balance occurred because more chromium was excreted through urine, and this influenced chromium mobilization, which did not help overcome the hyperglycemia. Our clozapine group had considerably higher fatty liver scores, which was supported by the findings of lowered adiponectin protein levels and increased FASN protein, PNPLA3 protein, FABP4 mRNA, and SREBP1 mRNA levels. We conclude that clozapine can worsen nonalcoholic fatty liver disease, diabetes, and kidney and retinal injury. Therefore, long-term administration of clozapine warrants higher attention.


Subject(s)
Chromium/deficiency , Clozapine/pharmacology , Glucose Intolerance/metabolism , Kidney Diseases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Retinal Diseases/metabolism , Adipocytes/metabolism , Animals , Biomarkers , Body Weights and Measures , Disease Models, Animal , Fatty Acid-Binding Proteins/genetics , Fluorescent Antibody Technique , Gene Expression , Gene Expression Regulation , Immunohistochemistry , Insulin/metabolism , Kidney Diseases/etiology , Liver/metabolism , Mice , Mice, Obese , Nitric Oxide Synthase Type II , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Retinal Diseases/etiology , Sterol Regulatory Element Binding Protein 1/genetics
5.
Molecules ; 26(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808318

ABSTRACT

Liver disorders have been recognized as one major health concern. Fucoidan, a sulfated polysaccharide extracted from the brown seaweed Fucus serratus, has previously been reported as an anti-inflammatory and antioxidant. However, the discovery and validation of its hepatoprotective properties and elucidation of its mechanisms of action are still unknown. The objective of the current study was to investigate the effect and possible modes of action of a treatment of fucoidan against thioacetamide (TAA)-induced liver injury in male C57BL/6 mice by serum biochemical and histological analyses. The mouse model for liver damage was developed by the administration of TAA thrice a week for six weeks. The mice with TAA-induced liver injury were orally administered fucoidan once a day for 42 days. The treated mice showed significantly higher body weights; food intakes; hepatic antioxidative enzymes (catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD)); and a lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and C-reactive protein (CRP) levels. Additionally, a reduced hepatic IL-6 level and a decreased expression of inflammatory-related genes, such as cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA was observed. These results demonstrated that fucoidan had a hepatoprotective effect on liver injury through the suppression of the inflammatory responses and acting as an antioxidant. In addition, here, we validated the use of fucoidan against liver disorders with supporting molecular data.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Liver/drug effects , Polysaccharides , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antioxidants/administration & dosage , Antioxidants/pharmacology , Cytokines/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Polysaccharides/administration & dosage , Polysaccharides/pharmacology , Thioacetamide/toxicity
6.
Data Brief ; 7: 995-998, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27761492

ABSTRACT

Cytopiloyne (CP), a novel polyacetylene compound extracted from B. pilosa, shows a multi-bioactivity, including immunomodulatory and antidiabetes. Here, we investigated the anti-Listeria effect of cytopiloyne in mice by assessing mortality, clearance of L. monocytogenes, and pathology examination. The data presented herein are supplemental to our research article entitled "Cytopiloyne, a polyacetylenic glucoside from Bidens pilosa, acts as a novel anticandidial agent via regulation of macrophages" [1].

7.
J Ethnopharmacol ; 184: 72-80, 2016 May 26.
Article in English | MEDLINE | ID: mdl-26924565

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bidens pilosa, a tropical and sub-tropical herbal plant, is used as an ethnomedicine for bacterial infection or immune modulation in Asia, America and Africa. It has been demonstrated that cytopiloyne (CP), a bioactive polyacetylenic glucoside purified from B. pilosa, increases the percentage of macrophages in the spleen but the specific effects on macrophages remain unclear. AIM OF THE STUDY: The aim of this study was to evaluate the effects of CP on macrophage activity and host defense in BALB/c mice with Candida parapsilosis infection and investigate the likely mechanisms. MATERIALS AND METHODS: RAW264.7 cells, a mouse macrophage cell line, were used to assess the effects of CP on macrophage activity by phagocytosis assay, colony forming assay and acridine orange/crystal violet stain. To evaluate the activity of CP against C. parapsilosis, BALB/c mouse infection models were treated with/without CP and histopathological examination was performed. The role of macrophages in the infection model was clarified by treatment with carrageenan, a selective macrophage-toxic agent. RAW264.7 macrophage activities influenced by CP were further investigated by lysosome staining, phagosomal acidification assay, lysosome enzyme activity and PKC inhibitor GF109203X. RESULTS: The results showed that CP in vitro enhances the ability of RAW264.7 macrophages to engulf and clear C. parapsilosis. In the mouse model, CP treatment improved the survival rate of Candida-infected mice and lowered the severity of microscopic lesions in livers and spleens via a macrophage-dependent mechanism. Furthermore, with CP treatment, the fusion and acidification of phagolysosomes were accelerated and the lysosome enzyme activity of RAW264.7 macrophages was elevated. PKC inhibitor GF109203X reversed the increase in phagocytic activity by CP demonstrating that the PKC pathway is involved in the macrophage-mediated phagocytosis of C. parapsilosis. CONCLUSIONS: Our data suggested that CP, as an immunomodulator, enhances macrophage activity against C. parapsilosis infections.


Subject(s)
Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidiasis/drug therapy , Glucosides/pharmacology , Glucosides/therapeutic use , Macrophages/drug effects , Polyynes/pharmacology , Polyynes/therapeutic use , Animals , Bidens , Candidiasis/metabolism , Candidiasis/microbiology , Candidiasis/pathology , Carrageenan/pharmacology , Cell Line , Female , Liver/drug effects , Liver/microbiology , Liver/pathology , Lysosomes/metabolism , Macrophages/physiology , Mice, Inbred BALB C , Phagocytosis/drug effects , Phytotherapy , Protein Kinase C/metabolism , Spleen/drug effects , Spleen/microbiology , Spleen/pathology
8.
Article in English | MEDLINE | ID: mdl-23573144

ABSTRACT

Cytopiloyne was identified as a novel polyacetylenic compound. However, its antidiabetic properties are poorly understood. The aim of the present study was to investigate the anti-diabetic effect and mode of action of cytopiloyne on type 2 diabetes (T2D). We first evaluated the therapeutic effect of cytopiloyne on T2D in db/db mice. We found that one dose of cytopiloyne reduced postprandial glucose levels while increasing blood insulin levels. Accordingly, long-term treatment with cytopiloyne reduced postprandial blood glucose levels, increased blood insulin, improved glucose tolerance, suppressed the level of glycosylated hemoglobin A1c (HbA1c), and protected pancreatic islets in db/db mice. Next, we studied the anti-diabetic mechanism of action of cytopiloyne. We showed that cytopiloyne failed to decrease blood glucose in streptozocin- (STZ-)treated mice whose ß cells were already destroyed. Additionally, cytopiloyne dose dependently increased insulin secretion and expression in ß cells. The increase of insulin secretion/expression of cytopiloyne was regulated by protein kinase C α (PKC α ) and its activators, calcium, and diacylglycerol (DAG). Overall, our data suggest that cytopiloyne treats T2D via regulation of insulin production involving the calcium/DAG/PKC α cascade in ß cells. These data thus identify the molecular mechanism of action of cytopiloyne and prove its therapeutic potential in T2D.

9.
J Vet Sci ; 13(3): 245-52, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23000581

ABSTRACT

The incidence of diabetes mellitus is increasing among companion animals. This disease has similar characteristics in both humans and animals. Diabetes is frequently identified as an independent risk factor for infections associated with increased mortality. In the present study, homozygous diabetic (db/db) mice were infected with Listeria (L.) monocytogenes and then treated with the anti-diabetic drug exendin-4, a glucagon-like peptide 1 analogue. In aged db/db mice, decreased CD11b(+) macrophage populations with higher lipid content and lower phagocytic activity were observed. Exendin-4 lowered high lipid levels and enhanced phagocytosis in macrophages from db/db mice infected with L. monocytogenes. Exendin-4 also ameliorated obesity and hyperglycemia, and improved ex vivo bacteria clearance by macrophages in the animals. Liver histology examined during L. monocytogenes infection indicated that abscess formation was much milder in exendin-4-treated db/db mice than in the control animals. Moreover, mechanistic studies demonstrated that expression of ATP binding cassette transporter 1, a sterol transporter, was higher in macrophages isolated from the exendin-4-treated db/db mice. Overall, our results suggest that exendin-4 decreases the risk of infection in diabetic animals by modifying the interaction between intracellular lipids and phagocytic macrophages.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Lipid Metabolism , Listeria monocytogenes/drug effects , Listeriosis/drug therapy , Macrophages/metabolism , Peptides/therapeutic use , Venoms/therapeutic use , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Age Factors , Animals , Blood Chemical Analysis , Cholesterol/metabolism , Diabetes Mellitus, Type 2/genetics , Dyslipidemias/drug therapy , Dyslipidemias/genetics , Exenatide , Female , Hyperglycemia/drug therapy , Hyperglycemia/genetics , Injections, Intraperitoneal , Lipid Metabolism/drug effects , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Macrophages/drug effects , Mice , Obesity/drug therapy , Obesity/genetics , Phagocytosis/drug effects
10.
PLoS One ; 6(11): e27480, 2011.
Article in English | MEDLINE | ID: mdl-22087325

ABSTRACT

Plants provide a rich source of lead compounds for a variety of diseases. A novel approach combining phytochemistry and chemotaxis assays was developed and used to identify and study the mechanisms of action of the active compounds in F. japonica, a medicinal herb traditionally used to treat inflammation. Based on a bioactivity-guided purification strategy, two anthranoids, emodin and physcion, were identified from F. japonica. Spectroscopic techniques were used to characterize its crude extract, fractions and phytochemicals. The crude extract, chloroform fraction, and anthranoids of F. japonica significantly inhibited CXCR4-mediated chemotaxis. Mechanistic studies showed that emodin and physcion inhibited chemotaxis via inactivating the MEK/ERK pathway. Moreover, the crude extract and emodin could prevent or treat type 1 diabetes in non-obese diabetic (NOD) mice. This study illustrates the applicability of a combinational approach for the study of anti-inflammatory medicine and shows the potential of F. japonica and its anthranoids for anti-inflammatory therapy.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Chemotaxis/drug effects , Fallopia japonica/chemistry , Animals , Anthraquinones/isolation & purification , Anthraquinones/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/prevention & control , Emodin/analogs & derivatives , Emodin/isolation & purification , Emodin/therapeutic use , MAP Kinase Signaling System , Mice , Mice, Inbred NOD , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Receptors, CXCR4
SELECTION OF CITATIONS
SEARCH DETAIL
...