Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Imaging ; 4: e4, 2024.
Article in English | MEDLINE | ID: mdl-38571546

ABSTRACT

Cryo-electron microscopy (cryo-EM) is an imaging technique that allows the visualization of proteins and macromolecular complexes at near-atomic resolution. The low electron doses used to prevent radiation damage to the biological samples result in images where the power of noise is 100 times stronger than that of the signal. Accurate identification of proteins from these low signal-to-noise ratio (SNR) images is a critical task, as the detected positions serve as inputs for the downstream 3D structure determination process. Current methods either fail to identify all true positives or result in many false positives, especially when analyzing images from smaller-sized proteins that exhibit extremely low contrast, or require manual labeling that can take days to complete. Acknowledging the fact that accurate protein identification is dependent upon the visual interpretability of micrographs, we propose a framework that can perform denoising and detection in a joint manner and enable particle localization under extremely low SNR conditions using self-supervised denoising and particle identification from sparsely annotated data. We validate our approach on three challenging single-particle cryo-EM datasets and projection images from one cryo-electron tomography dataset with extremely low SNR, showing that it outperforms existing state-of-the-art methods used for cryo-EM image analysis by a significant margin. We also evaluate the performance of our algorithm under decreasing SNR conditions and show that our method is more robust to noise than competing methods.

2.
Nat Methods ; 20(12): 1909-1919, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884796

ABSTRACT

Single-particle cryo-electron tomography is an emerging technique capable of determining the structure of proteins imaged within the native context of cells at molecular resolution. While high-throughput techniques for sample preparation and tilt-series acquisition are beginning to provide sufficient data to allow structural studies of proteins at physiological concentrations, the complex data analysis pipeline and the demanding storage and computational requirements pose major barriers for the development and broader adoption of this technology. Here, we present a scalable, end-to-end framework for single-particle cryo-electron tomography data analysis from on-the-fly pre-processing of tilt series to high-resolution refinement and classification, which allows efficient analysis and visualization of datasets with hundreds of tilt series and hundreds of thousands of particles. We validate our approach using in vitro and cellular datasets, demonstrating its effectiveness at achieving high-resolution and revealing conformational heterogeneity in situ. The framework is made available through an intuitive and easy-to-use computer application, nextPYP ( http://nextpyp.app ).


Subject(s)
Electron Microscope Tomography , Software , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Proteins , Image Processing, Computer-Assisted/methods
3.
Nat Commun ; 14(1): 5149, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620323

ABSTRACT

The human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus in the human genome and is activated and expressed in many cancers and amyotrophic lateral sclerosis. We present the immature HERV-K capsid structure at 3.2 Å resolution determined from native virus-like particles using cryo-electron tomography and subtomogram averaging. The structure shows a hexamer unit oligomerized through a 6-helix bundle, which is stabilized by a small molecule analogous to IP6 in immature HIV-1 capsid. The HERV-K immature lattice is assembled via highly conserved dimer and trimer interfaces, as detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the linker between the N-terminal and the C-terminal domains of CA occurs during HERV-K maturation. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.


Subject(s)
Amyotrophic Lateral Sclerosis , Endogenous Retroviruses , Humans , Endogenous Retroviruses/genetics , Biological Evolution , Capsid , Capsid Proteins/genetics
4.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333227

ABSTRACT

A significant part of the human genome consists of endogenous retroviruses sequences. Human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus, is activated and expressed in many cancers and amyotrophic lateral sclerosis and possibly contributes to the aging process. To understand the molecular architecture of endogenous retroviruses, we determined the structure of immature HERV-K from native virus-like particles (VLPs) using cryo-electron tomography and subtomogram averaging (cryoET STA). The HERV-K VLPs show a greater distance between the viral membrane and immature capsid lattice, correlating with the presence of additional peptides, SP1 and p15, between the capsid (CA) and matrix (MA) proteins compared to the other retroviruses. The resulting cryoET STA map of the immature HERV-K capsid at 3.2 Å resolution shows a hexamer unit oligomerized through a 6-helix bundle which is further stabilized by a small molecule in the same way as the IP6 in immature HIV-1 capsid. The HERV-K immature CA hexamer assembles into the immature lattice via highly conserved dimmer and trimer interfaces, whose interactions were further detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the flexible linker between the N-terminal and the C-terminal domains of CA occurs between the immature and the mature HERV-K capsid protein, analogous to HIV-1. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.

5.
Biol Imaging ; 3: e3, 2023.
Article in English | MEDLINE | ID: mdl-38510165

ABSTRACT

Single-particle cryo-electron microscopy (cryo-EM) is a powerful imaging modality capable of visualizing proteins and macromolecular complexes at near-atomic resolution. The low electron-doses used to prevent radiation damage to the biological samples, however, result in images where the power of the noise is 100 times greater than the power of the signal. To overcome these low signal-to-noise ratios (SNRs), hundreds of thousands of particle projections are averaged to determine the three-dimensional structure of the molecule of interest. The sampling requirements of high-resolution imaging impose limitations on the pixel sizes that can be used for acquisition, limiting the size of the field of view and requiring data collection sessions of several days to accumulate sufficient numbers of particles. Meanwhile, recent image super-resolution (SR) techniques based on neural networks have shown state-of-the-art performance on natural images. Building on these advances, here, we present a multiple-image SR algorithm based on deep internal learning designed specifically to work under low-SNR conditions. Our approach leverages the internal image statistics of cryo-EM movies and does not require training on ground-truth data. When applied to single-particle datasets of apoferritin and T20S proteasome, we show that the resolution of the 3D structure obtained from SR micrographs can surpass the limits imposed by the imaging system. Our results indicate that the combination of low magnification imaging with in silico image SR has the potential to accelerate cryo-EM data collection by virtue of including more particles in each exposure and doing so without sacrificing resolution.

6.
Acta Crystallogr D Struct Biol ; 78(Pt 7): 817-824, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35775981

ABSTRACT

Tomographic reconstruction of frozen-hydrated specimens followed by extraction and averaging of sub-tomograms has successfully been used to determine the structure of macromolecules in their native environment at resolutions that are high enough to reveal molecular level interactions. The low throughput characteristic of tomographic data acquisition combined with the complex data-analysis pipeline that is required to obtain high-resolution maps, however, has limited the applicability of this technique to favorable samples or to resolutions that are too low to provide useful mechanistic information. Recently, beam image-shift electron cryo-tomography (BISECT), a strategy to significantly accelerate the acquisition of tilt series without sacrificing image quality, was introduced. The ability to produce thousands of high-quality tilt series during a single microscope session, however, introduces significant bottlenecks in the downstream data analysis, which has so far relied on specialized pipelines. Here, recent advances in accurate estimation of the contrast transfer function and self-tuning exposure-weighting routines that contribute to improving the resolution and streamlining the structure-determination process using sub-volume averaging are reviewed. Ultimately, the combination of automated data-driven techniques for image analysis together with high-throughput strategies for tilt-series acquisition will pave the way for tomography to become the technique of choice for in situ structure determination.


Subject(s)
Electron Microscope Tomography , Electrons , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Macromolecular Substances
7.
Nucleic Acids Res ; 49(21): 12540-12555, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34792150

ABSTRACT

Watson-Crick base pairs (bps) are the fundamental unit of genetic information and the building blocks of the DNA double helix. However, A-T and G-C can also form alternative 'Hoogsteen' bps, expanding the functional complexity of DNA. We developed 'Hoog-finder', which uses structural fingerprints to rapidly screen Hoogsteen bps, which may have been mismodeled as Watson-Crick in crystal structures of protein-DNA complexes. We uncovered 17 Hoogsteen bps, 7 of which were in complex with 6 proteins never before shown to bind Hoogsteen bps. The Hoogsteen bps occur near mismatches, nicks and lesions and some appear to participate in recognition and damage repair. Our results suggest a potentially broad role for Hoogsteen bps in stressed regions of the genome and call for a community-wide effort to identify these bps in current and future crystal structures of DNA and its complexes.


Subject(s)
Base Pairing , DNA-Binding Proteins/chemistry , DNA/chemistry , Nucleic Acid Conformation , Protein Domains , Base Sequence , Binding Sites/genetics , Computational Biology/methods , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Databases, Genetic , Hydrogen Bonding , Models, Molecular , Mutation , Protein Binding , Thermodynamics
8.
Nat Commun ; 12(1): 1957, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33785757

ABSTRACT

Tomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value. Here, we introduce protocols for tilt-series acquisition and processing that accelerate data collection speed by up to an order of magnitude and improve map resolution compared to existing approaches. We achieve this by using beam-image shift to multiply the number of areas imaged at each stage position, by integrating geometrical constraints during imaging to achieve high precision targeting, and by performing per-tilt astigmatic CTF estimation and data-driven exposure weighting to improve final map resolution. We validated our beam image-shift electron cryo-tomography (BISECT) approach by determining the structure of a low molecular weight target (~300 kDa) at 3.6 Å resolution where density for individual side chains is clearly resolved.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Imaging, Three-Dimensional/methods , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Particle Size , Reproducibility of Results
9.
Anal Chem ; 89(6): 3278-3284, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28211678

ABSTRACT

Protein tyrosine sulfation (PTS) is a widespread posttranslational modification that induces intercellular and extracellular responses by regulating protein-protein interactions and enzymatic activity. Although PTS affects numerous physiological and pathological processes, only a small fraction of the total predicted sulfated proteins has been identified to date. Here, we localized the potential sulfation sites of Escherichia coli proteins on a proteome microarray by using a 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase-coupled tyrosylprotein sulfotransferase (TPST) catalysis system that involves in situ PAPS generation and TPST catalysis. Among the 4256 E. coli K12 proteins, 875 sulfated proteins were identified using antisulfotyrosine primary and Cy3-labeled antimouse secondary antibodies. Our findings add considerably to the list of potential proteins subjected to tyrosine sulfation. Similar procedures can be applied to identify sulfated proteins in yeast and human proteome microarrays, and we expect such approaches to contribute substantially to the understanding of important human diseases.


Subject(s)
Escherichia coli Proteins/analysis , Escherichia coli Proteins/chemistry , High-Throughput Screening Assays , Protein Array Analysis , Proteome , Tyrosine/analogs & derivatives , Animals , Drosophila melanogaster/enzymology , Escherichia coli K12 , Escherichia coli Proteins/genetics , Humans , Multienzyme Complexes/isolation & purification , Multienzyme Complexes/metabolism , Sulfate Adenylyltransferase/isolation & purification , Sulfate Adenylyltransferase/metabolism , Sulfotransferases/isolation & purification , Sulfotransferases/metabolism , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...