Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Cardiovasc Diabetol ; 23(1): 201, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867282

ABSTRACT

BACKGROUND: It's unclear if excess visceral adipose tissue (VAT) mass in individuals with prediabetes can be countered by adherence to a Mediterranean lifestyle (MEDLIFE). We aimed to examine VAT mass, MEDLIFE adherence, and their impact on type 2 diabetes (T2D) and diabetic microvascular complications (DMC) in individuals with prediabetes. METHODS: 11,267 individuals with prediabetes from the UK Biobank cohort were included. VAT mass was predicted using a non-linear model, and adherence to the MEDLIFE was evaluated using the 25-item MEDLIFE index, encompassing categories such as "Mediterranean food consumption," "Mediterranean dietary habits," and "Physical activity, rest, social habits, and conviviality." Both VAT and MEDLIFE were categorized into quartiles, resulting in 16 combinations. Incident cases of T2D and related DMC were identified through clinical records. Cox proportional-hazards regression models were employed to examine associations, adjusting for potential confounding factors. RESULTS: Over a median follow-up of 13.77 years, we observed 1408 incident cases of T2D and 714 cases of any DMC. High adherence to the MEDLIFE, compared to the lowest quartile, reduced a 16% risk of incident T2D (HR: 0.84, 95% CI: 0.71-0.98) and 31% for incident DMC (0.69, 0.56-0.86). Conversely, compared to the lowest quartile of VAT, the highest quartile increased the risk of T2D (5.95, 4.72-7.49) and incident any DMC (1.79, 1.36-2.35). We observed an inverse dose-response relationship between MEDLIFE and T2D/DMC, and a dose-response relationship between VAT and all outcomes (P for trend < 0.05). Restricted cubic spline analysis confirmed a nearly linear dose-response pattern across all associations. Compared to individuals with the lowest MEDLIFE quartile and highest VAT quartile, those with the lowest T2D risk had the lowest VAT and highest MEDLIFE (0.12, 0.08-0.19). High MEDLIFE was linked to reduced T2D risk across all VAT categories, except in those with the highest VAT quartile. Similar trends were seen for DMC. CONCLUSION: High adherence to MEDLIFE reduced T2D and MDC risk in individuals with prediabetes, while high VAT mass increases it, but MEDLIFE adherence may offset VAT's risk partly. The Mediterranean lifestyle's adaptability to diverse populations suggests promise for preventing T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Angiopathies , Diet, Mediterranean , Intra-Abdominal Fat , Prediabetic State , Protective Factors , Risk Reduction Behavior , Humans , Prediabetic State/epidemiology , Prediabetic State/diagnosis , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Middle Aged , Intra-Abdominal Fat/physiopathology , Aged , Risk Factors , Risk Assessment , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/prevention & control , Time Factors , Incidence , Adiposity , United Kingdom/epidemiology , Adult , Diet, Healthy , Exercise , Healthy Lifestyle , Obesity, Abdominal/diagnosis , Obesity, Abdominal/epidemiology , Obesity, Abdominal/physiopathology , Prospective Studies
2.
Food Chem ; 454: 139809, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38815324

ABSTRACT

Understanding the evolution of aroma profiles in stored sesame paste (SP) is essential for maintaining its quality. This study investigated the storage quality of SP and potential aroma markers indicative of sensory degradation. The descriptive sensory analysis demonstrated changes in aroma attributes during storage, transitioning from roasted sesame and nutty aromas to fermented and green aromas. Physicochemical analysis showed deepening color, intensified lipid oxidation, decreased levels of bioactive components, increased particle aggregation, and deteriorated flowability over 63 days at 40 °C. Gas chromatography-olfactometry-mass spectrometry identified 37 aroma-active compounds, with pyrazines, aldehydes, and phenols identified as the major constituents. Partial least squares regression analysis revealed 2-ethyl-3-methyl-pyrazine, 2-methoxy-4-vinylphenol, and benzaldehyde as key aroma-active compounds contributing significantly to the distinctive aromas "roasted nut and roasted sesame" found in SP. Conversely, hexanal and dimethyl disulfide emerged as potential markers of undesirable aromas in SP, including "rancid, green, and fermented". These findings provide insights into SP changes during storage, which is vital for preservation and quality enhancement strategies.

3.
Food Res Int ; 186: 114397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729739

ABSTRACT

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Subject(s)
Glucose , Lysine , Maillard Reaction , Odorants , Oxidation-Reduction , Sesame Oil , Sesame Oil/chemistry , Glucose/chemistry , Odorants/analysis , Lysine/chemistry , Phenols/chemistry , Benzodioxoles
4.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729483

ABSTRACT

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.


Subject(s)
Charcoal , Lignin , Sesame Oil , Lignin/chemistry , Charcoal/chemistry , Adsorption , Sesame Oil/chemistry , Benzo(a)pyrene/chemistry , Kinetics
5.
J Food Sci ; 89(6): 3494-3505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700357

ABSTRACT

The abilities of Chinese quince free proanthocyanidins (FP) and bound proanthocyanidins (BP) at different levels (0.1%, 0.15%, and 0.3%) to mitigate heterocyclic aromatic amine (HAA) formation in fried chicken patties were investigated for the first time and compared with vitamin C (Vc). FP and BP reduced HAAs in a dose-dependent manner. Significantly, high concentrations of FP (0.3%) resulted in a reduction of PhIP, harman, and norharman levels by 59.84%, 22.91%, and 38.21%, respectively, in chicken patties. The addition of proanthocyanidins significantly (p < 0.05) reduced the weight loss of fried chicken patties. Furthermore, a positive correlation was observed among pH, weight loss, and total HAA formation in all three groups (FP, BP, and Vc). Multivariate analysis showed that FP had a more pronounced effect than BP from the perspective of enhancing the quality of fried chicken patties and reducing the formation of HAAs. These results indicate that proanthocyanidins, both BP and FP, but especially FP, from Chinese quince can inhibit the formation of carcinogenic HAAs when added to protein-rich foods that are subsequently fried.


Subject(s)
Amines , Chickens , Cooking , Proanthocyanidins , Proanthocyanidins/analysis , Proanthocyanidins/pharmacology , Animals , Amines/chemistry , Cooking/methods , Heterocyclic Compounds/chemistry , Rosaceae/chemistry , East Asian People
6.
J Food Sci ; 89(6): 3759-3775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706376

ABSTRACT

Heterocyclic amines (HCAs) have potential carcinogenic and mutagenic activity and are generated in cooked protein-rich foods. Adding proanthocyanidins (PAs) to these foods before frying is an effective way to reduce HCAs. In this study, polymeric PAs (PPA) and ultrasound-assisted acid-catalyzed/catechin nucleophilic depolymerized PAs (UAPA, a type of oligomeric PA) were prepared from Chinese quince fruits (CQF). Different levels of PPA and UAPA (0.05%, 0.1%, and 0.15%) were added to chicken meatballs and tofu; then these foods were fried, and the content of HCAs in them after frying was investigated. The results showed that PPA and, particularly, UAPA significantly inhibited the formation of HCAs in fried meatballs and tofu, and this inhibition was dose-dependent. The inhibition of HCAs by both PPA and UAPA was stronger in the chicken meatballs than in fried tofu. The level of total HCAs was significantly reduced by 57.84% (from 11.93 to 5.03 ng/g) after treatment of meatballs with 0.15% UAPA, with inhibition rates of 78.94%, 50.37%, and 17.81% for norharman, harman, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), respectively. Of note, there was a negative correlation between water, lipid, protein, creatine, and glucose content and HCA content in the crust, interior, and whole (crust-plus-interior) measurements of all fried samples. Interestingly, PPA and UAPA were found more effective in inhibiting HCAs in the exterior crust than in the interior of the fried chicken meatballs. These results provide evidence that further studies on the reduction of the formation of harmful HCAs in fried foods by adding CQF PAs could be valuable to the fried food industry. PRACTICAL APPLICATION: Chinese quince proanthocyanidins treatments significantly inhibited the generation of heterocyclic amines (HCAs) in chicken meatballs and tofu when deep-fried. These results suggest that Chinese quince proanthocyanidins can be used as natural food additive for reducing HCAs in fried foods, laying the foundation for using Chinese quince fruit proanthocyanidins for HCA inhibition in the food industry.


Subject(s)
Amines , Chickens , Cooking , Proanthocyanidins , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Animals , Cooking/methods , Amines/chemistry , Fruit/chemistry , Meat Products/analysis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/analysis , Hot Temperature , East Asian People
7.
J Oleo Sci ; 73(5): 645-655, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583981

ABSTRACT

The physicochemical characteristics and general food quality were greatly impacted by milling. In order to investigate the effect of milling technique for physicochemical properties of sesame paste of sesame paste, samples were prepared using ball mill and colloid mill by varying grinding times. The samples prepared by ball milling had the higher moisture contents (0.07% - 0.14%) than colloid milling (p < 0.05), except for colloid milling for one cycle (0.11%). The particle size curves showed the multimodal distributions. Compared to colloid milled samples, ball milled samples have smaller particle sizes and more uniform particle distribution. The L* values of samples prepared by ball milling were higher than colloid milling. The ball mill produced sesame paste with a wider range of hardness and silkier texture, and the samples made by ball milling for 30 min had the highest hardness. And the hardness of both CMS and BMS showed a decreasing trend with increasing grinding time. During ball milling, high-speed cutting and collision caused breakage of disulfide bonds, and the sesame proteins were decomposed to their subunits. In conclusions, ball milling may be an alternative and promising process for the preparation of sesame paste.


Subject(s)
Chemical Phenomena , Colloids , Food Handling , Hardness , Particle Size , Sesamum , Sesamum/chemistry , Food Handling/methods , Colloids/chemistry , Food Quality , Time Factors , Water/chemistry , Plant Proteins/chemistry , Plant Proteins/analysis , Disulfides/chemistry , Disulfides/analysis
8.
J Oleo Sci ; 73(5): 813-821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583980

ABSTRACT

Gas chromatography-olfactory-mass spectrometry (GC-O-MS) combined with Aroma Extract Dilution Analysis (AEDA) were employed to characterize the key odor-active compounds in sesame paste (SP) and dehulled sesame paste (DSP). The AEDA results revealed the presence of 32 and 22 odor-active compounds in SP and DSP, respectively. Furthermore, 13 aroma compounds with FD ≥ 2, OAV ≥ 1, and VIP ≥ 1 were identified as key differential aroma compounds between SP and DSP. Specifically, compounds such as 3-methylbutyraldehyde (OAV = 100.70-442.57; fruity), 2-methylbutyraldehyde (OAV = 106.89-170.31; almond), m-xylene (FD = 16; salty pastry), and 2,5-dimethylpyrazine (FD = 8-16; roasted, salty pastry) played an important role in this differentiation. Additionally, the dehulling process led to increased fermented, sweet, green, and nutty aroma notes in DSP compared to the more pronounced burnt and roasted sesame aroma notes in SP. Our findings offer a theoretical foundation for the regulation of sesame paste aroma profiles.


Subject(s)
Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Sesamum , Sesamum/chemistry , Odorants/analysis , Food Handling/methods , Pyrazines/analysis , Xylenes/analysis , Aldehydes/analysis , Taste , Flavoring Agents/analysis , Volatile Organic Compounds/analysis
9.
J Cardiovasc Pharmacol ; 83(6): 588-601, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547517

ABSTRACT

ABSTRACT: Chronic kidney disease (CKD) is a significant global health threat that imposes a substantial burden on both individuals and societies. CKD frequently correlates with cardiovascular events, particularly left ventricular hypertrophy (LVH), which contributes to the high mortality rate associated with CKD. Fibroblast growth factor 23 (FGF23), a hormone primarily involved in regulating calcium and phosphorus metabolism, has been identified as a major risk factor for LVH in CKD patients. Elevated serum FGF23 levels are known to induce LVH and myocardial fibrosis by activating the fibroblast growth factor receptor 4 (FGFR4) signal pathway. Therefore, targeting FGFR4 and its downstream signaling pathways holds potential as a treatment strategy for cardiac dysfunction in CKD. In our current study, we have discovered that Hypericin, a key component derived from Hypericum perforatum , has the ability to alleviate CKD-related LVH by targeting the FGFR4/phospholipase C gamma 1 (PLCγ1) signaling pathway. Through in vitro experiments using rat cardiac myocyte H9c2 cells, we observed that Hypericin effectively inhibits FGF23-induced hypertrophy and fibrosis by suppressing the FGFR4/PLCγ1/calcineurin/nuclear factor of activated T-cell (NFAT3) signaling pathway. In addition, our in vivo studies using mice on a high-phosphate diet and rat models of 5/6 nephrectomy demonstrated that Hypericin has therapeutic effects against CKD-induced LVH by modulating the FGFR4/PLCγ1/calcineurin/NFAT3 signaling pathway. In conclusion, our research highlights the potential of Hypericin as a candidate for the treatment of CKD-induced cardiomyopathy. By suppressing the FGFR4/PLCγ1 signaling pathway, Hypericin shows promise in attenuating LVH and myocardial fibrosis associated with CKD.


Subject(s)
Anthracenes , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Fibrosis , Hypertrophy, Left Ventricular , Mice, Inbred C57BL , Myocytes, Cardiac , Perylene , Receptor, Fibroblast Growth Factor, Type 4 , Renal Insufficiency, Chronic , Signal Transduction , Animals , Perylene/analogs & derivatives , Perylene/pharmacology , Signal Transduction/drug effects , Fibroblast Growth Factors/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/prevention & control , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/drug therapy , Rats , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Line , Anthracenes/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Phospholipase C gamma/metabolism , NFATC Transcription Factors/metabolism , Mice
10.
Drug Dev Ind Pharm ; 50(4): 354-362, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456836

ABSTRACT

OBJECTIVE: To develop a sensitive and fast detection method via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to assess the concentration of ajuforrestin A, ajuforrestin B, ajugamacrin and 8-O-Acetylharpagide primarily derived from Ajuga plants in mice blood and their pharmacokinetics. METHODS: Single protein precipitation with high-proportioned acetonitrile is chosen for sample clean-up. The UPLC HSS T3 (2.1 mm × 100 mm, 1.8 µm) column with a mobile phase in gradient elution mode at the flow rate of 0.4 mL/min was used for sample separation. Acetonitrile was selected as the organic phase solution and water containing 0.1% formic acid was chosen as the aqueous solution. A tandem mass spectrometer containing an electrospray ionization (ESI) source in the positive ionization mode was used to detect four compounds via multiple reaction monitoring (MRM). RESULTS: The calibration curves (5-1000 ng/mL) of four compounds were linear with correlation coefficients > 0.997. The matrix effects, accuracy, precision, and recovery were all within permissible scope. CONCLUSIONS: In this approach, the corresponding pharmacokinetic parameters were successfully clarified in mouse for the first time, which provided a theoretical basis for the improvement of the standard of Ajuga plants and the safety of clinical medication. Furthermore, this method may provide the UPLC-MS/MS evidence for the differentiation of the main close relative varieties of genus Ajuga according to these plants contain different mixtures of the four marker compounds.


Subject(s)
Ajuga , Pyrans , Tandem Mass Spectrometry , Mice , Animals , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Ajuga/metabolism , Liquid Chromatography-Mass Spectrometry , Acetonitriles
11.
Int J Biol Macromol ; 264(Pt 2): 130718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460651

ABSTRACT

Chinese quince fruits (Chaenomeles sinensis) contain substantial amounts of lignin; however, the exact structure of lignin remains to be investigated. In this study, milled wood lignins (Milled wood lignin (MWL)-1, MWL-2, MWL-3, MWL-4, MWL-5, and MWL-6) were extracted from fruits harvested once a month from May to October 2019 to investigate their structural evolution during fruit growth. The samples were characterized via High-performance anion exchange chromatography (HPAEC), Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), thermogravimetric (TGA), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and NMR (2D-heteronuclear single quantum coherence (HSQC) and 31P). The MWL samples in all fruit growth stages were GS-type lignin and lignin core undergoing minimal alterations during fruit development. The predominant linkage in the lignin structure was ß-O-4', followed by ß-ß' and ß-5'. Galactose and glucose were the main monosaccharides associated with MWL. In MWL-6, the lignin exhibited the highest homogeneity and thermal stability. As the fruit matured, a gradual increase in the ß-O-4' proportion and the ratio of S/G was observed. The results provide comprehensive characterization of the cell wall lignin of quince fruit as it matures. This study could inspire innovative applications of quince fruit lignin and provide the optimal harvest time for lignin utilization.


Subject(s)
Lignin , Rosaceae , Lignin/chemistry , Fruit/chemistry , Spectroscopy, Fourier Transform Infrared , Rosaceae/chemistry , Wood/chemistry , China
12.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Article in English | MEDLINE | ID: mdl-38552695

ABSTRACT

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Subject(s)
Benzo(a)pyrene , Charcoal , Lignin , Sesame Oil , Sesamum , Charcoal/chemistry , Lignin/chemistry , Benzo(a)pyrene/chemistry , Adsorption , Sesame Oil/chemistry , Sesamum/chemistry , Zinc Compounds/chemistry , Chlorides/chemistry
13.
Food Chem X ; 21: 101203, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38384683

ABSTRACT

The study characterized the aroma-active compounds produced by sesame hulls at three roasting temperatures and analyzed the similarities and differences in the aroma profile of sesame hulls with whole seeds and kernels after roasting. Roasting hulls produced mainly furans, aldehydes, and ketones volatiles. 140 Compounds were identified as aroma-active compounds, including 36 key aroma compounds (odor activity value, OAV ≥ 1). Among them, furanone (caramel-like, OAV = 80), 3-methylbutanal (fruity, OAV = 124), and 2-methoxy-4-vinylphenol (burnt, smoky, OAV = 160) gave hulls (180 °C) sweet, burnt, and smoky aroma. Due to the contribution of vanillin (fatty, sweet milk, OAV = 45), 2-hydroxy-3-butanone (caramel-like, roast, OAV = 46), and 2-methoxy-4-vinylphenol (OAV = 78), hulls (200 °C) shown strong sweet and roast note. These results identified compounds that contributed significantly to the aroma of sesame hulls and elucidated the contribution of sesame hulls to the flavor of roasted whole seeds and sesame oil.

14.
Mikrochim Acta ; 191(3): 167, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38418644

ABSTRACT

A "signal-off" photoelectrochemical (PEC) sensing platform has been designed for the ultrasensitive detection of DNA methylation levels and multiple methylated sites. The platform employs tungsten trioxide and TpPa-1-COF loaded by gold nanoparticle (AuNPs@WO3@TpPa-1-COF) composite material as the photoactive component and p-type reduced graphene (rGO) as an efficient quencher. The PEC signal of AuNPs@WO3@TpPa-1-COF composite is effectively quenched in the presence of p-type rGO, because p-type rGO can compete with AuNPs@WO3@TpPa-1-COF to deplete light energy and electron donors. In addition, a hybrid strand reaction (HCR) amplification strategy fixes more target DNA and then combines with rGO-modified anti-5-methylcytosine antibody to facilitate ultrasensitive DNA methylation detection. Under optimal conditions, DNA methylation can be measured within a linear concentration range of 10-14 to 10-8 M, with an exceptionally low detection limit of 0.19 fM (S/N = 3). At the same time, the platform can conduct quantitative determination of multi-site methylation, with the linear equation △I = 44.19LogA + 61.43, and the maximum number of methylation sites is 5. The sensor demonstrates high sensitivity, excellent selectivity, and satisfactory stability. Furthermore, the proposed signal-off PEC strategy was successfully employed to detect DNA methylation in spiked human serum samples, with recoveries ranging from 93.17 to 107.28% and relative standard deviation (RSD) ranging from 1.15 to 5.49%.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Humans , Gold , DNA Methylation , Electrochemical Techniques
15.
Food Chem ; 444: 138642, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38325088

ABSTRACT

Chinese quince (Chaenomeles sinensis) fruit is an underutilized resource, rich in proanthocyanidins with antioxidant ability but poor lipid solubility. In this study, a novel modified oligomeric proanthocyanidin (MOPA) was prepared, which exhibited favorable lipid solubility (354.52 mg/100 g). It showed higher radical scavenging abilities than commercial antioxidant-BHA (butylated hydroxyanisole), both at 0.4-0.5 mg/mL. The addition of MOPA (0.04 %wt.) significantly increased the oxidative stability index of the soybean oil from 5.52 to 8.03 h, which was slightly lower than that of BHA (8.35 h). Analysis of the physicochemical properties and composition of oil during deep-frying showed that MOPA demonstrated significant antioxidant effects and effectively restricted the oil oxidation. This inhibition also delays the formation of heterocyclic amines (HAs) in fried food, thereby reducing the migration of HAs from food to deep-frying oil. Therefore, MOPA is a promising novel liposoluble antioxidant for protecting the quality of deep-frying oil.


Subject(s)
Phenylacetates , Proanthocyanidins , Rosaceae , Antioxidants/chemistry , Soybean Oil/chemistry , China
16.
J Oleo Sci ; 73(2): 147-161, 2024.
Article in English | MEDLINE | ID: mdl-38311405

ABSTRACT

Tigernut has been recognized as a promising resource for edible oil and starch. However, the research on the quality characteristics of tigernut from different regions is lagging behind, which limits the application of tigernut in food industry. Tigernut tubers were obtained from six major growing regions in China, and the physicochemical properties of their main components, oil and starch, were characterized. Tigernut tubers from Baoshan contained the most oil (30.12%), which contained the most ß-carotene (130.4 µg/100 g oil) due to high average annual temperature. Gas chromatography analysis and fingerprint analysis results indicated that tigernut oil (TNO) consists of seven fatty acids, of which oleic acid is the major component. Changchun TNO contained the least total tocopherols (6.04 mg/100 g oil) due to low average annual temperature. Tigernut tubers from Chifeng (CF) contained the most starch (34.85%) due to the large diurnal temperature range. Xingtai starch contained the most amylose (28.4%). Shijiazhuang starch showed the highest crystallinity (19.5%). Anyang starch had the highest pasting temperature (76.0°C). CF starch demonstrated superior freeze-thaw stability (syneresis: 50%) due to low mean annual precipitation. The results could be further applied to support tigernut industries and relevant researchers that looks for geographical origin discrimination and improvements on tigernut quality, with unique physicochemical and technological properties.


Subject(s)
Cyperus , Starch , Starch/chemistry , Cyperus/chemistry , Plant Oils/chemistry , Vegetables , China
17.
Carbohydr Polym ; 328: 121711, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220344

ABSTRACT

This study was to explore the internal reasons for the changes in oil absorption performance of tigernut starch (TS) by revealing the high-temperature induced variations of structural and functional properties of TS. The results showed that as the temperature increased from 80 °C to 140 °C, the degree of starch gelatinization increased, while the proportion of double helix structures, the total proportion of B1 and B2 chains, the relative crystallinity and the molecular weight decreased, accompanied by the fragmentation and swelling of TS granules. The oxidation of tigernut oil (TNO) led to a decrease in oil density and an increase in total polar component content. These phenomena could result in an increase of oil absorption capacity of TS and starch-lipid complex index. With further increase in temperature from 170 °C to 200 °C, the disruption of the crystalline structure and chain structure increased, resulting in the melting and disintegration of TS granules. This caused a decrease in the starch-oil contact area and capillary absorption of TNO by the TS granules. The results will contribute to revealing the effect of high-temperature induced changes in the structural and functional properties of TS on its oil absorption properties.

18.
J Food Sci ; 89(3): 1361-1372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38258954

ABSTRACT

This study aimed to investigate the influence of the moisture content of dehulled sesame seeds on the aroma formation and harmful substances in sesame paste (SP). The SP samples were made of dehulled sesame seeds with moisture contents of 5%, 10%, 15%, 20%, and 25% and denoted as T5, T10, T15, T20, and T25, respectively. The results revealed that adjusting the moisture content had a significant impact on aroma compounds, color intensity, and sensory properties. SP pre-adjusted to a moisture content of 10% exhibited the smallest L* value and the highest browning strength. Using gas chromatography-olfactometry-mass spectrometry analysis, the researchers identified 38 aroma-active compounds in the SP, with pyrazines being the most abundant, contributing to roasted sesame and nutty aromas. Additionally, the presence of pyrrole and furan derivatives led to enhanced caramel and almond aromas, positively influencing the overall sensory properties. T10 demonstrated the highest levels of roasted sesame and nutty odors. Furthermore, the regulation of moisture content also affected the formation of harmful compounds, such as heterocyclic amines and polycyclic aromatic hydrocarbons (PAHs). Notably, the sample made of the sesame seeds with 10% and 15% moisture content exhibited the lowest total PAHs content (18.21-28.91 ng/g) and PAH4 content (non-detectable-0.15 ng/g). The carcinogen benzo[a]pyrene was not detected in any of the samples, ensuring a safer product. The pre-adjustment of moisture content in SP appears to be a promising approach to improve both its flavor and safety qualities.


Subject(s)
Sesamum , Volatile Organic Compounds , Odorants/analysis , Sesamum/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Seeds/chemistry
19.
Food Chem X ; 21: 101087, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38268846

ABSTRACT

This study developed a novel and green method to produce fragrant sesame oil using microwaves and subcritical extraction (SBE). Sesame seeds were microwaved at 540 W for 0-9 min before subcritical propane extraction at 40 °C and 0.5 MPa. SBE caused less deformation to the cellular microstructure of sesame cotyledons while dramatically improving oil yield (96.7-97.1 %) compared to screw processing (SP) (53.1-58.6 %). SBE improved extraction rates for γ-tocopherol (381.1-454.9 µg/g) and sesame lignans (917.9-970.4 mg/100 g) in sesame oil compared to SP (360.1-443.8 µg/g and 872.8-916.8 mg/100 g, respectively). Microwaves generated aroma-active heterocyclics and phenolics faster than hot-air roasting in sesame oil with a better sensory profile. SBE had a higher extraction rate for aroma-active terpenes, alcohols, and esters while reducing the concentrations of carcinogenic PAHs and HCAs in sesame oil. The novel combination process of microwaves and subcritical extraction is promising in producing fragrant sesame oil with superior qualities.

20.
Food Chem X ; 21: 101100, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38236464

ABSTRACT

In this study, the influence of pre-regulation of the water content (5-25 %) on the harmful substances and aroma compounds of sesame paste (SP) was investigated. The results indicated that pre-regulation of the water content reduced the generation of harmful substances in SP. Notably, the total heterocyclic amine content in SP-15 was significantly lower than in other samples. SP-10 had the lowest total polycyclic aromatic hydrocarbon content, while SP-5 exhibited the lowest PAH4 content. Using solvent-assisted aroma evaporation and GC-O-MS, 50 aroma compounds were identified in SP. Pre-regulation of water content in SP led to an elevated concentration of heterocyclic compounds thereby imparting a diverse aromatic profile. It enhanced the perceived intensity of roasted sesame and salty pastry aromas while reducing the perceived intensity of fermentation and burnt aromas. The findings suggested the pre-regulation of the water content played a crucial role in aroma modulation and harmful substances control in SP.

SELECTION OF CITATIONS
SEARCH DETAIL
...