Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124500, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38795526

ABSTRACT

The near-infrared (NIR) thermally activated delayed fluorescence (TADF) molecules hold practical application value in various fields, including biological imaging, anti-counterfeiting, sensors, telemedicine, photomicrography, and night vision display. These molecules have emerged as a significant development direction in organic electroluminescent devices, offering exciting possibilities for future technological advancements. Despite the remarkable potential of NIR-TADF molecules in various applications, the development of molecules that exhibit both long-wavelength emission and high efficiency remains a significant challenge. Herein, based on T-type and Y-type TADF molecules BCN-TPA and ECN-TPA, a novel X-type TADF molecule X-ECN-TPA is theoretically designed through a molecular fusion strategy. Utilizing first-principles calculations and the thermal vibration correlation function (TVCF) method, the photophysical properties and luminescent mechanisms of these three molecules in both solvent and solid (doped films) are revealed. A comparison of the luminescent properties of isomeric BCN-TPA and ECN-TPA shows that the enhanced luminescence efficiency of BCN-TPA in the solid states is attributed to higher radiative rates and lower non-radiative rates. Furthermore, compared to BCN-TPA and ECN-TPA, X-ECN-TPA exhibits significant conjugation extension, resulting in a pronounced redshift, reaching 831 nm and 813 nm in solvent and solid states, respectively. Importantly, molecular fusion significantly increases the transition dipole moment density between the donor and acceptor, leading to a substantial increase in radiative transition rates. Additionally, molecular fusion effectively reduces the energy gap between the first singlet excited state (S1) and the first triplet excited state (T1), facilitating the improvement of the reverse intersystem crossing (RISC) process. In addition, the calculation of Marcus formula shows that the triplet energy transfer from CBP to BCN-TPA, ECN-TPA and X-ECN-TPA is very effective. This work not only designs a novel efficient NIR-TADF molecule but also proposes a strategy for designing efficient NIR-TADF molecules. This principle offers unique insights for optimizing traditional molecular frameworks, opening up new possibilities for future advancements.

2.
Int Immunopharmacol ; 129: 111626, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38320353

ABSTRACT

BACKGROUND: Gestational diabetes mellitus (GDM) is associated with adverse myocardial remodeling and impaired cardiac function of fetus. Nevertheless, specific molecular mechanisms underlying type 1 GDM-induced fetal myocardial injury remain unknown. Therefore, this study proposes to identify possible molecular mechanisms using RNA-seq. METHODS: A rat type 1 GDM model was developed using streptozotocin (STZ) (25 and 50 mg/kg), and weight and glucose tolerance of maternal and offspring were evaluated. Changes in markers of myocardial injury and oxidative stress identified by ELISA and biochemical kits in offspring hearts. Identification of differentially expressed mRNAs (DE-mRNAs) associated with myocardial injury in type 1 GDM offspring using RNA-seq. Proliferation, apoptosis, and oxidative stress were assessed in high glucose-induced H9C2 cells after exogenously modulating ATP Synthase Membrane Subunit E (ATP5me). RESULTS: Maternal weight, glucose and glucose tolerance, and fetal weight and heart weight were reduced in the type 1 GDM model, especially in 50 mg/kg STZ-induced. Increased of creatine kinase-MB (CK-MB), cardiac troponin T (cTnT), hypersensitive C-reactive protein (hs-CRP), reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased of superoxide dismutase (SOD) were observed in type 1 GDM offspring hearts. type 1 GDM offspring hearts exhibited disorganized cardiomyocytes with enlarged gaps, broken myocardial fibers, erythrocyte accumulation and inflammatory infiltration. RNA-seq identified 462 DE-mRNAs in type 1 GDM offspring hearts, which mainly regulate immunity, redox reactions, and cellular communication. Atp5me was under-expressed in type 1 GDM offspring hearts, and high glucose decreased Atp5me expression in H9C2 cells. Overexpressing Atp5me alleviated high glucose-induced decrease in proliferation, mitochondrial membrane potential, BCL2 and SOD, and increase in apoptosis, MDA, ROS, c-Caspase-3, and BAX in H9C2 cells. CONCLUSION: This study first demonstrated that ATP5me attenuated type 1 GDM-induced fetal myocardial injury. This provides a possible molecular mechanism for the treatment of type 1 GDM-induced fetal myocardial injury.


Subject(s)
Heart Injuries , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Myocardium/metabolism , Oxidative Stress , Glucose/metabolism , Apoptosis , Superoxide Dismutase/metabolism
3.
Phys Chem Chem Phys ; 26(6): 5156-5168, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38260957

ABSTRACT

Narrowband thermally activated delayed fluorescence (TADF) molecules have extensive applications in optoelectronics, biomedicine, and energy. The full-width at half-maximum (FWHM) holds significant importance in assessing the luminescence efficiency and color purity of TADF molecules. The goal is to achieve efficient and stable TADF emissions by regulating and optimizing the FWHM. However, a bridge from the basic physical parameters (such as geometric structure and reorganization energy) to the macroscopic properties (delayed fluorescence, efficiency, and color purity) is needed and it is highly necessary and urgent to explore the internal mechanisms that influence FWHM. Herein, first-principles calculations coupled with the thermal vibration correlation function (TVCF) theory were performed to study the energy consumption processes of the excited states for the three TADF molecules (2,3-POA, 2,3-DPA, and 2,3-CZ) with different donors; inner physical parameters affecting the FWHM were detected. By analyzing the basic geometric and electronic structures as well as the transition properties and reorganization energies, three main findings in modulating FWHM were obtained, namely a large local excitation (LE) proportion in the first singlet excited state is advantageous in reducing FWHM, a donor group with weak electron-donating ability is beneficial for achieving narrowband emission, and small reorganization energies for the ground state are favorable for reducing FWHM. Thus, wise molecular design strategies to achieve efficient narrowband TADF emission are theoretically proven and proposed. We hope that these results will promote an in-depth understanding of FWHM and accelerate the development of high color purity TADF emitters.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123684, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38039645

ABSTRACT

Balancing the rapid radiative decay process and the fast reverse intersystem crossing (RISC) process of thermally activated delayed fluorescence (TADF) molecule remains a great challenge and efficient molecular design strategies are highly desired. Herein, from a theoretical perspective, excited state properties of three reported TADF molecules (1TICz, 1BOICz and 2BOICz) are investigated based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations coupled with the thermal vibration correlation function (TVCF) method. Results indicate that, by introducing the multi-resonance (MR) acceptor, 1BOICz possesses hybrid long-range and short-range charge transfer features, balanced small energy gap (ΔEST) and large oscillator strength (f) is obtained. Furthermore, by incorporating double equivalent MR acceptors in 2BOICz, largely enhanced f with slightly changed ΔEST is achieved, inner mechanism for remarkable photophysical property is illustrated. Keep this strategy, seven new TADF molecules (2pDBA-bICz-1, 2pDBA-bICz-2, 2OSBA-bICz, 2DQAO-bICz, 2QAO-bICz, 2SQAO-bICz and 2OQAO-bICz) are theoretically designed, detailed physical parameters are analyzed and excited state energy consumption process is studied. Strong electrophilicity on acceptor is determined and the strength of nucleophilic sites on the bridge-phenyl of 2DQAO-bICz, 2QAO-bICz, 2SQAO-bICz and 2OQAO-bICz is increased, this promotes the short-range charge transfer property. In addition, the excitation processes for all studied molecules are dominated by long-range charge transfer from donor to acceptors, and supplemented by the short-range charge transfer on the bridge-phenyl with MR effect. Compromise energy gap and oscillator strength as well as large spin orbit coupling (SOC) constant are obtained for designed molecules. Thus, by regulating the long-range and short-range charge transfer ratios, excited state properties are successfully modulated and new efficient TADF molecules are proposed. Our research aims to provide deeper insight into long-range and short-range charge transfer features in balancing small ΔEST and large f, which could facilitate the development of novel efficient TADF molecules.

5.
Research (Wash D C) ; 6: 0241, 2023.
Article in English | MEDLINE | ID: mdl-37779635

ABSTRACT

Achieving color-tunable emission in single-component organic emitters with multistage stimuli-responsiveness is of vital significance for intelligent optoelectronic applications, but remains enormously challenging. Herein, we present an unprecedented example of a color-tunable single-component smart organic emitter (DDOP) that simultaneously exhibits multistage stimuli-responsiveness and multimode emissions. DDOP based on a highly twisted amide-bridged donor-acceptor-donor structure has been found to facilitate intersystem crossing, form multimode emissions, and generate multiple emissive species with multistage stimuli-responsiveness. DDOP pristine crystalline powders exhibit abnormal excitation-dependent emissions from a monomer-dominated blue emission centered at 470 nm to a dimer-dominated yellow emission centered at 550 nm through decreasing the ultraviolet (UV) excitation wavelengths, whereas DDOP single crystals show a wide emission band with a main emission peak at 585 nm when excited at different wavelengths. The emission behaviors of pristine crystalline powders and single crystals are different, demonstrating emission features that are closely related to the aggregation states. The work has developed color-tunable single-component organic emitters with simultaneous multistage stimuli-responsiveness and multimode emissions, which is vital for expanding intelligent optoelectronic applications, including multilevel information encryption, multicolor emissive patterns, and visual monitoring of UV wavelengths.

6.
Phys Chem Chem Phys ; 25(34): 23207-23221, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37605930

ABSTRACT

Stimulus-responsive organic room temperature phosphorescence (RTP) materials with long lifetimes, high efficiencies and tunable emission properties have broad applications. However, the amounts and species of efficient RTP materials are far from meeting the requirements and the inner stimulus-responsive mechanisms are unclear. Therefore, developing efficient stimulus-responsive RTP materials is highly desired and the relationship between the molecular structures and luminescent properties of RTP materials needs to be clarified. Based on this point, the influences of different substitution sites of Br on the luminescent properties of RTP molecules are studied by the combined quantum mechanics and molecular mechanics (QM/MM) coupled with thermal vibration correlation function (TVCF) theory. Moreover, the hydrostatic pressure effect on the efficiencies and lifetimes is explored and the inner mechanism is illustrated. The results show that, for the exciton conversion process, the o-substitution molecule possesses the largest spin-orbit coupling (SOC) value (〈S1|Hso|T1〉) in the intersystem crossing (ISC) process and this is conducive to the accumulation of triplet excitons. However, for the energy consumption process, the large SOC value (〈S0|Hso|T1〉) for the p-substitution molecule brings a fast non-radiative decay rate, and the small SOC value for the m-substitution molecule generates a decreased non-radiative decay rate which is helpful for realizing long lifetime emission. Keeping with this perspective, the conflict between high exciton utilization and long RTP emission needs to be balanced rather than enhancing the SOC effect by simply adding heavy atoms in RTP systems. Through regulating the molecular stacking modes by the hydrostatic pressure effect, the inner stimulus-responsive mechanism is revealed. The data of 〈S1|Hso|T1〉 in the ISC process remain almost unchanged, while 〈S0|Hso|T1〉 values and transition dipole moments are sensitive to the hydrostatic pressure. Under 1 GPa, the RTP molecule achieves a maximum efficiency (81.17%) and long lifetime (2.72 ms) with the smallest SOC and decreased non-radiative decay rate. To our knowledge, this is the first time that the hydrostatic pressure responsive mechanism for RTP molecules is revealed from a theoretical perspective, and the relationships between molecular structures and luminescent properties are detected. Our work could facilitate the development of high performance RTP molecules and expand their applications in multilevel information encryption.

7.
Phys Chem Chem Phys ; 25(15): 10977-10990, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37016944

ABSTRACT

In recent studies, thermally activated delayed fluorescence (TADF) molecules with a through space charge transfer (TSCT) feature have attracted wide attention. Nevertheless, studies on the substitution effects on the photophysical properties of TSCT-based TADF molecules are insufficient, and the corresponding theoretical investigations and effective molecular design strategies are highly desired. Herein, in order to reveal the inner mechanisms between the substitution effects from the donor unit and the luminescent properties for TSCT-based TADF molecules, the photophysical properties of nine TSCT-based TADF molecules (including one molecule with dual configurations) are theoretically studied. Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) coupled with the thermal vibration correlation function (TVCF) method, basic physical parameters such as geometric changes, electron-donating abilities, adiabatic singlet-triplet energy gaps, TSCT ratios, hole and electron distributions and excited state decay rates are calculated and analyzed. The relationships between molecular structures and luminescent properties are determined. Our results show that molecules with carbazole as the donor possess large oscillator strengths and transition dipole moments, and a prominent radiative decay process is determined. Moreover, molecules with phenazine as the donor present small geometric changes, strong electron-donating capability and tiny adiabatic singlet-triplet energy gap, and all these factors contribute to the effective reverse intersystem crossing process (RISC), and this feature makes these molecules promising TSCT-based TADF molecules. Furthermore, dual configurations for 2CTF molecules are determined (2CTF2.1 and 2CTF2.2), and 2CTF2.1 with a large TSCT ratio possessing a fast fluorescence decay process and high luminescence efficiency can be achieved. As for 2CTF2.2 with a small TSCT ratio, a remarkable RISC process is determined and high exciton utilization can be realized. Thus, 2CTF can be regarded as a self-doping TADF molecule and a remarkable TADF feature is detected. Our investigations provide a perspective for experimental measurements and propose an effective design strategy for efficient TSCT-based TADF molecules.

8.
Phys Chem Chem Phys ; 25(9): 6659-6673, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36794480

ABSTRACT

Organic room temperature phosphorescence (RTP) has been widely investigated to realize long-lifetime luminescent materials and improvement in their efficiency is a key focus of research, especially for red and near-infrared (NIR) RTP molecules. However, due to the lack of systematic studies on the relationship between basic molecular structures and luminescence properties, both the species and amounts of red and NIR RTP molecules remain far from meeting the requirements of practical applications. Herein, based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations, the photophysical properties of seven red and NIR RTP molecules in tetrahydrofuran (THF) and in the solid phase were theoretically studied. The excited state dynamic processes were investigated by calculating the intersystem crossing and reverse intersystem crossing rates considering the surrounding environmental effects in THF and in the solid phase using a polarizable continuum model (PCM) and quantum mechanics and molecular mechanics (QM/MM) method, respectively. The basic geometric and electronic data were obtained, Huang-Rhys factors and reorganization energies were analyzed, and natural atomic orbital was used to calculate the orbital information of the excited states. Simultaneously, the electrostatic potential distribution on molecular surfaces was analyzed. Further, intermolecular interactions were visualized using the molecular planarity binding independent gradient model based on Hirshfeld partition (IGMH). The results showed that the unique molecular configuration has the potential to achieve red and NIR RTP emission. Not only did the substitutions of halogen and sulfur make the emission wavelength red-shifted, but also linking the two cyclic imide groups could further make the emission wavelength longer. Moreover, we found that the emission characteristics of molecules in THF had a similar trend as in the solid phase. Based on this point, two new RTP molecules with long emission wavelengths (645 nm and 816 nm) are theoretically proposed and their photophysical properties are fully analyzed. Our investigation provides a wise strategy to design efficient and long-emission RTP molecules with an unconventional luminescence group.

9.
Phys Chem Chem Phys ; 25(2): 1032-1044, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36537471

ABSTRACT

Red and near-infrared (NIR) thermally activated delayed fluorescence (TADF) molecules show excellent potential applications in organic light-emitting diodes (OLEDs). Due to the lack of systematic studies on the relationship between molecular structures and luminescence properties, both the species and amounts of red and NIR TADF molecules are far from meeting the requirements for practical applications. Herein, four new efficient molecules (DQCN-2spAs, TPCN-2spAs, DPCN-2spAs and BPCN-2spAs) are proposed and their photophysical properties are theoretically predicted based on first-principles calculations and thermal vibration correlation function (TVCF) theory. The results show that all molecules exhibit red or NIR emissions and they have fast radiative decay rates and reverse intersystem crossing (RISC) rates, and the excellent TADF luminescence properties are predicted. Moreover, based on spiro-acridine (spAs) as the donor unit, the combination with different acceptors can change the dihedral angle between the ground state and the excited state, the bending degree of the donor is positively correlated with the reorganization energy, and this feature can have a great influence on the non-radiative process. Furthermore, based on these theoretical predictions, experimental verifications are performed and the synthesized BPCN-2spAs is confirmed to be an efficient NIR TADF molecule. Thus, the relationships between basic molecular structures and photophysical properties are revealed, a feasible design strategy is applied and four promising red and NIR TADF molecules are proposed. All these results could contribute to the development of red and NIR TADF emitters and OLEDs.

10.
Curr Med Imaging ; 19(3): 278-285, 2023.
Article in English | MEDLINE | ID: mdl-35838219

ABSTRACT

OBJECTIVES: The study aims to evaluate the value of the mandible transection head-side shifting method (MTHSM) by 2-dimensional sonography in the screening of fetal cleft lip and palate (CLP) during the nuchal translucency scans. METHODS: A total of 7,336 fetuses enrolled for first-trimester aneuploidy screening were included in this prospective study. A sequential scanning approach from the mandible transection toward the head was used for the assessment of the palate in the midsagittal, axial, and coronal sections. Observe the continuity of the palatal line, upper alveolar ridge, and primary palate. All fetuses were followed by second-trimester scans and postnatal evaluation. RESULTS: A total of 18 cases of CLP were identified in the first trimester based on this method. Out of 18, 9 (50.0%) were unilateral CLP, 4 (22.2%) were bilateral CLP, and 5 (27.8%) were median CLP. There were no false-positive results found. Three were missed but confirmed in the second-trimester anomaly scan, including 2 cases of isolated cleft palate (CP) and one of isolated cleft lip (CL). Firsttrimester diagnosis of CLP using MTHSM had a sensitivity of 85.7%, a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 99.9%. CONCLUSION: The mandible transection head-side shifting method is feasible in assessing CLP at the time of routine first-trimester sonographic screening.


Subject(s)
Cleft Lip , Cleft Palate , Pregnancy , Female , Humans , Infant, Newborn , Cleft Lip/diagnostic imaging , Pregnancy Trimester, First , Cleft Palate/diagnostic imaging , Prospective Studies , Ultrasonography, Prenatal/methods
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121899, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36179564

ABSTRACT

Recently, through space charge transfer (TSCT)-based thermally activated delayed fluorescence (TADF) molecules have shown advantages in achieving high efficiencies and tunable emissions. However, the relationships between basic molecular structures and luminescent properties are unclear. Theoretical investigations to reveal the substitution effects with different numbers and positions on excited-state properties are highly desired. Herein, by taking TSCT-based TADF molecules S-CNDF-S-tCz, S-CNDF-D-tCz and T-CNDF-T-tCz as skeletons, a series of promising TADF molecules are designed by adopting ortho, meta and para substitutions with different numbers and positions. Photophysical properties of total 16 molecules are theoretically studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods in chloroform combined with polarizable continuum model. Results indicate that molecules with ortho-substitution possess small geometric changes and short Donor-Acceptor distances which are induced by the intramolecular van der Waals interactions. Decreased non-radiative consumption and increased TSCT ratio and therefore excellent performance for them can be expected. For molecules with large substitution numbers, twist structures facilitate them to realize small adiabatic energy gaps between the lowest singlet excited state (S1) and the lowest triplet excited state (T1), this designing strategy is consistent with the TADF dendrimers. Thus, the relationships between molecular structures and luminescent properties are revealed and promising TSCT-based TADF molecules with high efficiencies are theoretically proposed. Our investigations provide theoretical perspectives for inner mechanisms of substitution effect, which could further afford meaningful guidance to design new efficient TSCT-based TADF molecules.

12.
Sensors (Basel) ; 22(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36236688

ABSTRACT

In this study, the basic concept of height nonlinear velocity field modeling in the CORS station is described. The noise results in a large deviation between the observation and predicted height. An ARCH testing method for heteroscedasticity of CORS height residual square series was proposed and the non-stationary characteristic of CORS height residual square time series was proved. A CORS height nonlinear velocity field reconstruction method based on the GARCH model was proposed. First, a nonlinear LS periodic fitting model was established for CORS height series data. Then, a GARCH model was established for the fitted non-stationary residual series. Finally, the signal term, linear trend term, and GARCH model noise term of nonlinear LS modeling were combined to reconstruct the nonlinear velocity field of the CORS height. The RMSE of nonlinear LS cycle modeling for 25 CORS stations worldwide ranged from 5 to 10 mm. The differences between the velocity, approximate annual and semi-annual amplitudes, and SOPAC results were 0.73 mm/a, 0.94 mm, and 0.51 mm, respectively. Compared with the centimeter amplitude of the CORS station height, the accuracy of the nonlinear model established in this study met the requirements. The results of height nonlinear velocity field reconstruction at 25 CORS stations worldwide showed that the mean square error of prediction of the one-year height movement reached 9 mm, and the average prediction accuracy of the semi-annual was 7 mm. Compared with the calculation accuracy of the current global CORS elevation component of 3-5 mm, the prediction error in this study was about 3 mm. The expected goal was achieved regarding the accuracy of the CORS station height nonlinear velocity field model.


Subject(s)
Algorithms , Nonlinear Dynamics , Periodicity
13.
Diagnostics (Basel) ; 12(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36291972

ABSTRACT

When patent foramen ovale (PFO) combines with the prominent Eustachian valve or Chiari network (EV/CN), contrast transthoracic echocardiography (cTTE) may miss the diagnosis of PFO. We sought to determine the characteristics of right-to-left shunt (RLS) in PFO patients with prominent EV/CN on cTTE and identify the causal factors of missed diagnosis. We consecutively enrolled 98 patients who suffered from PFO-related stroke and with prominent EV/CN. All patients were divided into the delayed and non-delayed groups according to the characteristics of RLS on cTTE. The characteristics of RLS were compared with those of 42 intrapulmonary shunt patients. The anatomical characteristics of PFO and EV/CN were analyzed in the 98 PFO patients. Upon cTTE, significantly delayed occurrence and longer duration of the RLS in the delayed group were found both at rest and during the Valsalva maneuver, similar to the intrapulmonary shunt. Multivariate logistic analysis revealed that the length of EV/CN (>19 mm) and the diameter of PFO at the left atrium aspect (<1.2 mm) were high-risk factors for missed diagnosis. In conclusion, RLS showed delayed emergence and disappearance in some of the PFO patients with prominent EV/CN. The length of EV/CN and the diameter of PFO may have been related to the missed diagnosis of PFO.

14.
Phys Chem Chem Phys ; 24(28): 17140-17154, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35791916

ABSTRACT

Orange and red thermally activated delayed fluorescence (TADF) emitters have shown promising applications in organic light emitting diodes (OLEDs) and the bio-medical field. However, both the species and amounts of orange and red molecules are far from meeting the requirement for practical applications; this is due to the lack of systematic studies on the relationship between molecular structures and luminescence properties. Herein, the excited state dynamic processes and photophysical properties of six donor-acceptor (D-A) type orange-red TADF molecules, which possess the same acceptor, are theoretically studied in toluene by using the polarizable continuum model (PCM). Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations coupled with the thermal vibration correlation function (TVCF) method, the adiabatic singlet-triplet energy gaps, natural transition orbital properties, reorganization energies, hole and electron distributions, and the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are theoretically analyzed. The results indicate that remarkable geometric changes between the lowest singlet excited state (S1) and the ground state (S0) are mainly caused by the rotation of the donor unit for NAI-R2, NAI-R3 and NAI-DPAC, and the reorganization energy is mainly contributed by the dihedral angle. However, for NAI-DMAC, BTDMAc-NAI and BFDMAc-NAI, remarkable geometric changes are found in the acceptor unit with large contribution of reorganization energy by bond length. These variations bring different non-radiative energy consumption processes. Moreover, small energy gaps between S1 and the lowest triplet excited state (T1) are determined for all studied molecules and an efficient RISC process is detected. Furthermore, enhanced conjugacy in the donor unit and remarkable intramolecular interactions are determined for BTDMAc-NAI and BFDMAc-NAI, which is helpful to promote the up-conversion process. Our investigations give reasonable explanations for previous experimental measurements and the relationship between basic structures and luminescence properties is revealed, which could facilitate the development of new efficient TADF emitters.

15.
Sensors (Basel) ; 21(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34833772

ABSTRACT

Monitoring regional terrestrial water load deformation is of great significance to the dynamic maintenance and hydrodynamic study of the regional benchmark framework. In view of the lack of a spatial interpolation method based on the GNSS (Global Navigation Satellite System) elevation time series for obtaining terrestrial water load deformation information, this paper proposes to employ a CORS (Continuously Operating Reference Stations) network combined with environmental loading data, such as ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric data, the GLDAS (Global Land Data Assimilation System) hydrological model, and MSLA (Mean Sea Level Anomaly) data. Based on the load deformation theory and spherical harmonic analysis method, we took 38 CORS stations in southeast Zhejiang province as an example and comprehensively determined the vertical deformation of the crust as caused by regional terrestrial water load changes from January 2015 to December 2017, and then compared these data with the GRACE (Gravity Recovery and Climate Experiment) satellite. The results show that the vertical deformation value of the terrestrial water load in southeast Zhejiang, as monitored by the CORS network, can reach a centimeter, and the amplitude changes from -1.8 cm to 2.4 cm. The seasonal change is obvious, and the spatial distribution takes a ladder form from inland to coastal regions. The surface vertical deformation caused by groundwater load changes in the east-west-south-north-central sub-regions show obvious fluctuations from 2015 to 2017, and the trends of the five sub-regions are consistent. The amplitude of surface vertical deformation caused by groundwater load change in the west is higher than that in the east. We tested the use of GRACE for the verification of CORS network monitoring results and found a relatively consistent temporal distribution between both data sets after phase delay correction on GRACE, except for in three months-November in 2015, and January and February in 2016. The results show that the comprehensive solution based on the CORS network can effectively improve the monitoring of crustal vertical deformation during regional terrestrial water load change.

16.
Medicine (Baltimore) ; 100(28): e26645, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34260564

ABSTRACT

ABSTRACT: Gestational Diabetes Mellitus (GDM), as a common complication of pregnancy, has an increasing trend globally. GDM leads to maternal complications and fetal complications. Fetal cardiac diastolic dysfunction is strongly associated with GDM. This study aims to assess the ventricular diastolic function of fetuses exposed to GDM by looking into the diagnostic parameters using both conventional method and Dual-gate Doppler method (DD). And to investigate the potential of DD method in early detection of fetal cardiac diastolic dysfunction.56 women diagnosed with GDM and 55 non-GDM pregnant women were enrolled in their 24 to 30 weeks of gestation. Conventional method and DD method were applied to measure mitral and tricuspid inflow velocities E-waves, A-waves on pulsed-wave Doppler, and mitral and tricuspid annular velocities e'-waves, a'-waves on Tissue Doppler imaging. E/A, e'/a' and E/e' ratio was calculated. The difference between GDM and control groups was statistically tested and analysed using one-sample Kolmogorov-Smirnov test, Student t test, Mann-Whitney U test and Kruskal-Wallis test and Bland-Altman plot analysis.Intraobserver intraclass correlation coefficients of E/A, e'/a', and E/e' value of both mitral and tricuspid valve are all greater than 0.80, while interobserver intraclass correlation coefficients are between 0.71 and 0.88. Right (6.35 vs 6.79; P = .001) ventricular function showed significantly lower E/e' ratios in the GDM group compared with control fetuses by conventional method. Both left (6.16 vs 6.59; P = .036) and right (6.28 vs 6.75; P = .01) ventricular function showed significantly lower E/e' ratios in the GDM group compared with control fetuses by DD method.Exposure to high level of maternal blood glucose leads to impaired diastolic function in the fetuses. Fetal right ventricular function is a potential key point to study to enable an early detection for fetal diastolic dysfunction since the alteration and damage are more likely to happen in right ventricular. Measurement of E/e' ratio using DD method is considered as a promising method in fetal cardiac diastolic function assessment. Well or poorly control of the GDM does not have significant influence on the fetal diastolic function thus an early detection of GDM and GDM induced fetal cardiac dysfunction is necessary.


Subject(s)
Diabetes, Gestational/physiopathology , Fetal Heart/diagnostic imaging , Fetal Heart/physiology , Prenatal Exposure Delayed Effects/physiopathology , Adult , Blood Glucose , Cross-Sectional Studies , Echocardiography, Doppler , Female , Humans , Pregnancy , Pregnancy Trimester, Third , Prospective Studies , Ventricular Function/physiology
17.
Micromachines (Basel) ; 12(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064079

ABSTRACT

In recent years, in order to obtain a radiator with strong heat exchange capacity, researchers have proposed a lot of heat exchangers to improve heat exchange capacity significantly. However, the cooling abilities of heat exchangers designed by traditional design methods is limited even if the geometric parameters are optimized at the same time. However, using topology optimization to design heat exchangers can overcome this design limitation. Furthermore, researchers have used topology optimization theory to designed one-to-one and many-to-many inlet and outlet heat exchangers because it can effectively increase the heat dissipation rate. In particular, it can further decrease the hot-spot temperature for many-to-many inlet and outlet heat exchangers. Therefore, this article proposes novel heat exchangers with three inlets and one outlet designed by topology optimization to decrease the fluid temperature at the outlet. Subsequently, the effect of the channel depth on the heat exchanger design is also studied. The results show that the type of exchanger varies with the channel depth, and there exists a critical depth value for obtaining the minimum substrate temperature difference. Then, the flow and heat transfer performance of the heat exchangers are numerically investigated. The numerical results show that the heat exchanger derived by topology optimization with the minimum temperature difference as the goal (Model-2) is the best design for flow and heat transfer performance compared to other heat sink designs, including the heat exchanger derived by topology optimization having the average temperature as the goal (Model-1) and conventional straight channels (Model-3). The temperature difference of Model-1 can be reduced by 37.5%, and that of Model-2 can be decreased by 62.5% compared to Model-3. Compared with Model-3, the thermal resistance of Model-1 can be reduced by 21.86%, while that of Model-2 can be decreased by 47.99%. At room temperature, we carried out the forced convention experimental test for Model-2 to measure its physical parameters (temperature, pressure drop) to verify the numerical results. The error of the average wall temperature between experimental results and simulation results is within 2.6 K, while that of the fluid temperature between the experimental and simulation results is within 1.4 K, and the maximum deviation of the measured Nu and simulated Nu was less than 5%. This indicated that the numerical results agreed well with the experimental results.

18.
Magn Reson Med ; 81(6): 3798-3807, 2019 06.
Article in English | MEDLINE | ID: mdl-30793789

ABSTRACT

PURPOSE: The mammalian target of rapamycin is an enzyme that regulates cell metabolism and proliferation. It is up-regulated in aggressive tumors, such as glioblastoma, leading to increased glucose uptake and consumption. It has been suggested that glucose CEST signals reflect the delivery and tumor uptake of glucose. The inhibitor rapamycin (sirolimus) has been applied as a glucose deprivation treatment; thus, glucose CEST MRI could potentially be useful for monitoring the tumor responses to inhibitor treatment. METHODS: A human U87-EGFRvIII xenograft model in mice was studied. The mice were treated with a mammalian target of Rapamycin inhibitor, rapamycin. The effect of the treatment was evaluated in vivo with dynamic glucose CEST MRI. RESULTS: Rapamycin treatment led to significant increases (P < 0.001) in dynamic glucose-enhanced signal in both the tumor and contralateral brain as compared to the no-treatment group, namely a maximum enhancement of 3.7% ± 2.3% (tumor, treatment) versus 1.9% ± 0.4% (tumor, no-treatment), 1.7% ± 1.1% (contralateral, treatment), and 1.0% ± 0.4% (contralateral, no treatment). Dynamic glucose-enhanced contrast remained consistently higher in treatment versus no-treatment groups for the duration of the experiment (17 min). This was confirmed with area-under-curve analysis. CONCLUSION: Increased glucose CEST signal was found after mammalian target of Rapamycin inhibition treatment, indicating potential for dynamic glucose-enhanced MRI to study tumor response to glucose deprivation treatment.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Sirolimus/pharmacology , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain Chemistry/drug effects , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Cell Line, Tumor , Female , Glioblastoma/diagnostic imaging , Glioblastoma/metabolism , Humans , Mice , Mice, SCID , Xenograft Model Antitumor Assays
19.
Magn Reson Med ; 81(1): 47-56, 2019 01.
Article in English | MEDLINE | ID: mdl-30058240

ABSTRACT

PURPOSE: To examine the detection sensitivity for the rapidly exchanging hydroxyl protons of D-glucose using the recently developed on-resonance variable delay multi-pulse (onVDMP) chemical exchange saturation transfer (CEST) technique. METHODS: The onVDMP method was applied for the detection of water signal changes upon venous D-glucose infusion in mice with 9L glioma xenografts. The effect size of onVDMP MRI during infusion was compared with that of conventional continuous wave (CW) CEST MRI. RESULTS: Both methods highlighted the tumor and the blood vessels on D-glucose infusion. In interleaved studies, the mean signal changes detected by onVDMP were found to be 1.8 times higher than those by CW-CEST, attributed to its high labeling efficiency for fast exchanging protons and the labeling of the OH protons over a larger frequency range. CONCLUSIONS: The onVDMP method is a more sensitive technique for the detection of exogenous CEST agents with fast-exchanging protons compared to CW-CEST MRI.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Algorithms , Animals , Area Under Curve , Brain Neoplasms/pathology , Cell Line, Tumor , Contrast Media , Female , Glioma/pathology , Glucose/metabolism , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Mice , Mice, SCID , Neoplasm Transplantation , Phantoms, Imaging , Protons , Reproducibility of Results , Spectrophotometry , Water
20.
Entropy (Basel) ; 20(12)2018 Dec 17.
Article in English | MEDLINE | ID: mdl-33266702

ABSTRACT

A new type of multi-baffle-type heat sink is proposed in this paper. The heat-transfer coefficient and pressure drop penalty of the employed six heat sink models are numerically investigated under five different inlet velocities. It is shown that Model 6 (M6) has excellent heat transfer performance as its heat-transfer coefficient reaches a value of 1758.59 W/m2K with a pressure drop of 2.96 × 104 Pa, and the temperature difference between the maximum and the minimum temperature of the heating surface is 51.7 K. The results showed that the coolant for M6 is distributed evenly to each channel at the maximal degree. The phenomena of the maldistribution of temperature is effectively improved. Moreover, the thermal resistance and thermal enhancement factor for the six models is also examined. M6 possesses the lowest total thermal resistance and largest thermal enhancement factor compared to the other five models. Furthermore, an experimental platform is set up to verify the simulation results obtained for M6. The simulated heat-transfer coefficient and pressure drop values agree well with the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...