Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(7): 9333-9342, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345015

ABSTRACT

Flexible tactile sensors play an important role in the development of wearable electronics and human-machine interaction (HMI) systems. However, poor sensing abilities, an indispensable external energy supply, and limited material selection have significantly constrained their advancement. Herein, a self-powered flexible triboelectric sensor (TES) is proposed by integrating lotus-root-derived porous carbon (PC) into polydimethylsiloxane (PDMS). Owing to the superior charge capturing capability of PC, the PDMS/PC (PPC)-based TES exhibits an open-circuit voltage (Voc) of 22.8 V when it is periodically patted by skin at the pressure of 2 N and the frequency of 1 Hz, which is 5 times higher than that of a pristine PDMS-based TES. Furthermore, the as-prepared self-powered TES exhibits a high sensitivity of 3.24 V kPa-1 below 15 kPa for detecting human motion signals, such as finger clicks, joint bends, etc. Last but not the least, after the assembly of a PPC-based TES array and construction of an HMI system, the robotic snake can be controlled remotely by recognizing finger touching signals. This work shows broad potential applications for the self-powered TES in the fields of intelligent robotics, flexible electronics, disaster relief, and intelligence spying.


Subject(s)
Carbon , Touch , Humans , Porosity , Skin , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...