Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Blood Cells Mol Dis ; : 102861, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38839522

ABSTRACT

This study aimed to investigate the mechanism of the apoptosis of erythroblasts in rat bone marrow after the exposure to hypobaric hypoxia. Male SD rats were randomly divided into three groups. The hypoxic group was kept in a hypobaric hypoxia chamber at a simulated altitude of 5000 m for 7 and 28 days, respectively. The control group was kept at an altitude of 2260 m. We found that myeloid: erythroid (M:E) ratio was significantly lower after hypoxia exposure and the proportions of polychromatic erythroblasts and orthochromatic erythroblasts significantly increased compared to control group, along with significant increase in the proportion of CD71+ cells and apoptosis rate. The expression levels of caspase-3, Bax, and Cyt-C in CD71+ cells were higher after hypoxia exposure than those in control group, while there was no significant difference in the expression levels of TNFR and Fas. In conclusion, after exposure to hypobaric hypoxia the proliferation of peripheral blood and bone marrow erythroblasts in rats increased, and apoptosis also increased, indicating that bone marrow erythroblasts in rats is regulated by both proliferation and apoptosis, and the mitochondrial pathway is one of the important pathways for apoptosis.

2.
ACS Sens ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829039

ABSTRACT

As a facile substitute for the invasive technique of blood testing, wearable electrochemical sensors exhibit high potential for the noninvasive and real-time monitoring of biomarkers in human sweat. However, owing to enzyme specificity, the simultaneous detection of multiple biomarkers by enzymatic analysis is challenging. Moreover, sweat accumulation under sensors causes sweat contamination, which hinders real-time biomarker detection from sweat. This study reports the design and fabrication of flexible wearable electrochemical sensors containing a composite comprising Au nanorods (AuNRs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for the nonenzymatic detection of levodopa (LD) and uric acid (UA) in sweat. Each sensor was integrated with a flexible three-electrode system and a microfluidic patch for sweat sampling. AuNRs immobilized by PEG-doped PEDOT:PSS showed excellent analytical performance for LD and UA at different potentials. Thus, the newly fabricated sensors could detect LD and UA over a broad detection range with high sensitivity and showed a low limit of detection for both species. On-body assessments confirmed the ability of these sensors to simultaneously detect LD and UA in real time. Therefore, this study could open new frontiers in the fabrication of wearable electrochemical sensors for the pharmacokinetic profile tracking of LD and gout management.

3.
Sci Rep ; 14(1): 13108, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849383

ABSTRACT

LHPP has been shown to be a new tumor suppressor, and has a tendency to be under-expressed in a variety of cancers. Oncolytic virotheray is a promising therapeutics for lung cancer in recent decade years. Here we successfully constructed a new recombinant oncolytic adenovirus GD55-LHPP and investigated the effect of GD55-LHPP on the growth of lung cancer cells in vitro and in vivo. The results showed that LHPP had lower expression in either lung cancer cells or clinical lung cancer tissues compared with normal cells or tissues, and GD55-LHPP effectively mediated LHPP expression in lung cancer cells. GD55-LHPP could effectively inhibit the proliferation of lung cancer cell lines and rarely affected normal cell growth. Mechanically, the oncolytic adenovirus GD55-LHPP was able to induce stronger apoptosis of lung cancer cells compared with GD55 through the activation of caspase signal pathway. Notably, GD55-LHPP also activated autophagy-related signal pathway. Further, GD55-LHPP efficiently inhibited tumor growth in lung cancer xenograft in mice and prolonged animal survival rate compared with the control GD55 or PBS. In conclusion, the novel construct GD55-LHPP provides a valuable strategy for lung cancer-targeted therapy and develop the role of tumor suppress gene LHPP in lung cancer gene therapy.


Subject(s)
Adenoviridae , Apoptosis , Lung Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Xenograft Model Antitumor Assays , Lung Neoplasms/therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Humans , Animals , Oncolytic Virotherapy/methods , Adenoviridae/genetics , Oncolytic Viruses/genetics , Mice , Cell Line, Tumor , Cell Proliferation , Mice, Nude , Female , Autophagy
4.
J Obes Metab Syndr ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714326

ABSTRACT

Background: Triglyceride glucose (TyG) and TyG-body mass index (TyG-BMI) are reliable surrogate indexes of insulin resistance and used for risk stratification and outcome prediction in patients with atherosclerotic cardiovascular disease (ASCVD). Here, we inserted estimated average glucose (eAG) into the TyG (TyAG) and TyG-BMI (TyAG-BMI) as derived parameters and explored their clinical significance in cardiovascular risk prediction. Methods: This was a population-based cohort study of 9,944 Chinese patients with ASCVD. The baseline admission fasting glucose and A1C-derived eAG values were recorded. Cardiovascular events (CVEs) that occurred during an average of 38.5 months of follow-up were recorded. We stratified the patients into four groups by quartiles of the parameters. Baseline data and outcomes were analyzed. Results: Distribution of the TyAG and TyAG-BMI indexes shifted slightly toward higher values (the right side) compared with TyG and TyG-BMI, respectively. The baseline levels of cardiovascular risk factors and coronary severity increased with quartile of TyG, TyAG, TyG-BMI, and TyAG-BMI (all P<0.001). The multivariate-adjusted hazard ratios for CVEs when the highest and lowest quartiles were compared from low to high were 1.02 (95% confidence interval [CI], 0.77 to 1.36; TyG), 1.29 (95% CI, 0.97 to 1.73; TyAG), 1.59 (95% CI, 1.01 to 2.58; TyG-BMI), and 1.91 (95% CI, 1.16 to 3.15; TyAG-BMI). The latter two showed statistical significance. Conclusion: This study suggests that TyAG and TyAG-BMI exhibit more information than TyG and TyG-BMI in disease progression among patients with ASCVD. The TyAG-BMI index provided better predictive performance for CVEs than other parameters.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167228, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734318

ABSTRACT

BACKGROUND: Early embryonic arrest and fragmentation (EEAF) is a common cause of female infertility, but the genetic causes remain to be largely unknown. CIP2A encodes the cellular inhibitor of PP2A, playing a crucial role in mitosis and mouse oocyte meiosis. METHODS: Exome sequencing and Sanger sequencing were performed to identify candidate causative genes in patients with EEAF. The pathogenicity of the CIP2A variant was assessed and confirmed in cultured cell lines and human oocytes through Western blotting, semi-quantitative RT-PCR, TUNEL staining, and fluorescence localization analysis. FINDINGS: We identified CIP2A (c.1510C > T, p.L504F) as a novel disease-causing gene in human EEAF from a consanguineous family. L504 is highly conserved throughout evolution. The CIP2A variant (c.1510C > T, p.L504F) reduced the expression level of the mutant CIP2A protein, leading to the abnormal aggregation of mutant CIP2A protein and cell apoptosis. Abnormal aggregation of CIP2A protein and chromosomal dispersion occurred in the patient's oocytes and early embryos. We further replicated the patient phenotype by knockdown CIP2A in human oocytes. Additionally, CIP2A deficiency resulted in decreased levels of phosphorylated ERK1/2. INTERPRETATION: We first found that the CIP2A loss-of-function variant associate with female infertility characterized by EEAF. Our findings suggest the uniqueness and importance of CIP2A gene in human oocyte and early embryo development. FUNDING: This work was supported by National Key Research and Development Program of China (2023YFC2706302), the National Natural Science Foundation of China (81000079, 81170165, and 81870959), the HUST Academic Frontier Youth Team (2016QYTD02), and the Key Research of Huazhong University of Science and Technology, Tongji Hospital (2022A20).

6.
Chemosphere ; 358: 142239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705414

ABSTRACT

So far, about 130 disinfection by-products (DBPs) and several DBPs-groups have had their potential endocrine-disrupting effects tested on some endocrine endpoints. However, it is still not clear which specific DBPs, DBPs-groups/subgroups may be the most toxic substances or groups/subgroups for any given endocrine endpoint. In this study, we attempt to address this issue. First, a list of relevant DBPs was updated, and 1187 DBPs belonging to 4 main-groups (aliphatic, aromatic, alicyclic, heterocyclic) and 84 subgroups were described. Then, the high-priority endocrine endpoints, DBPs-groups/subgroups, and specific DBPs were determined from 18 endpoints, 4 main-groups, 84 subgroups, and 1187 specific DBPs by a virtual-screening method. The results demonstrate that most of DBPs could not disturb the endocrine endpoints in question because the proportion of active compounds associated with the endocrine endpoints ranged from 0 (human thyroid receptor beta) to 32% (human transthyretin (hTTR)). All the endpoints with a proportion of active compounds greater than 10% belonged to the thyroid system, highlighting that the potential disrupting effects of DBPs on the thyroid system should be given more attention. The aromatic and alicyclic DBPs may have higher priority than that of aliphatic and heterocyclic DBPs by considering the activity rate and potential for disrupting effects. There were 2 (halophenols and estrogen DBPs), 12, and 24 subgroups that belonged to high, moderate, and low priority classes, respectively. For individual DBPs, there were 23 (2%), 193 (16%), and 971 (82%) DBPs belonging to the high, moderate, and low priority groups, respectively. Lastly, the hTTR binding affinity of 4 DBPs was determined by an in vitro assay and all the tested DBPs exhibited dose-dependent binding potency with hTTR, which was consistent with the predicted result. Thus, more efforts should be performed to reveal the potential endocrine disruption of those high research-priority main-groups, subgroups, and individual DBPs.


Subject(s)
Disinfectants , Disinfection , Endocrine Disruptors , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Humans , Disinfectants/analysis , Disinfectants/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
mSystems ; : e0138523, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752789

ABSTRACT

A dysfunction of human host genes and proteins in coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key factor impacting clinical symptoms and outcomes. Yet, a detailed understanding of human host immune responses is still incomplete. Here, we applied RNA sequencing to 94 samples of COVID-19 patients with and without hematological tumors as well as COVID-19 uninfected non-tumor individuals to obtain a comprehensive transcriptome landscape of both hematological tumor patients and non-tumor individuals. In our analysis, we further accounted for the human-SARS-CoV-2 protein interactome, human protein interactome, and human protein complex subnetworks to understand the mechanisms of SARS-CoV-2 infection and host immune responses. Our data sets enabled us to identify important SARS-CoV-2 (non-)targeted differentially expressed genes and complexes post-SARS-CoV-2 infection in both hematological tumor and non-tumor individuals. We found several unique differentially expressed genes, complexes, and functions/pathways such as blood coagulation (APOE, SERPINE1, SERPINE2, and TFPI), lipoprotein particle remodeling (APOC2, APOE, and CETP), and pro-B cell differentiation (IGHM, VPREB1, and IGLL1) during COVID-19 infection in patients with hematological tumors. In particular, APOE, a gene that is associated with both blood coagulation and lipoprotein particle remodeling, is not only upregulated in hematological tumor patients post-SARS-CoV-2 infection but also significantly expressed in acute dead patients with hematological tumors, providing clues for the design of future therapeutic strategies specifically targeting COVID-19 in patients with hematological tumors. Our data provide a rich resource for understanding the specific pathogenesis of COVID-19 in immunocompromised patients, such as those with hematological malignancies, and developing effective therapeutics for COVID-19. IMPORTANCE: A majority of previous studies focused on the characterization of coronavirus infectious disease 2019 (COVID-19) disease severity in people with normal immunity, while the characterization of COVID-19 in immunocompromised populations is still limited. Our study profiles changes in the transcriptome landscape post-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hematological tumor patients and non-tumor individuals. Furthermore, our integrative and comparative systems biology analysis of the interactome, complexome, and transcriptome provides new insights into the tumor-specific pathogenesis of COVID-19. Our findings confirm that SARS-CoV-2 potentially tends to target more non-functional host proteins to indirectly affect host immune responses in hematological tumor patients. The identified unique genes, complexes, functions/pathways, and expression patterns post-SARS-CoV-2 infection in patients with hematological tumors increase our understanding of how SARS-CoV-2 manipulates the host molecular mechanism. Our observed differential genes/complexes and clinical indicators of normal/long infection and deceased COVID-19 patients provide clues for understanding the mechanism of COVID-19 progression in hematological tumors. Finally, our study provides an important data resource that supports the increasing value of the application of publicly accessible data sets to public health.

8.
Int Immunol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778574

ABSTRACT

BACKGROUND: Lymphocyte trafficking via chemokine receptors such as CCR5 and CXCR3 plays a critical role in the pathogenesis of aGVHD. Our previous studies showed that addition of CCR5 or CXCR3 antagonist could only slightly alleviate the development of aGVHD. Given the specificity of T lymphocytes bearing CXCR3 and CCR5, we investigated whether combined CCR5 and CXCR3 blockade could further attenuate murine aGVHD. METHODS: A mouse model of aGVHD was established to assess the efficacy of CCR5 or/and CXCR3 blockade on the development of aGVHD. The distribution of lymphocytes was calculated by quantification of immunostaining cells. The immunomodulatory effect on T cells were assessed by evaluating T- cell proliferation, viability, and differentiation. RESULTS: Using murine allo-HSCT model, we demonstrated that blockade of both CCR5 and CXCR3 could efficiently alleviate the development of aGVHD. Further investigation on the immune mechanisms for this prophylactic effect showed that more T cells were detained into secondary lymphoid organs (SLOs), which may lead to reduced infiltration of T cells into GVHD target organs. Our study also showed that T cells detained into SLOs dampened the activation, suppressed the polarization toward Th1 and Tc1, and induced the production of Treg cells. CONCLUSION: These data suggest that concurrent blockade of CCR5 and CXCR3 attenuates murine aGVHD through modulating donor-derived T cell distribution and function, and this might be applicable for aGVHD prophylaxis in clinical settings.

9.
BMC Neurol ; 24(1): 164, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773425

ABSTRACT

BACKGROUND AND PURPOSE: The relationship between heart rate and the prognosis of patients with large vessel occlusion strokes treated with mechanical thrombectomy (MT) is not well established. This study aimed to evaluate the association of mean heart rate and heart rate variability (HRV) with the clinical outcomes after MT therapy. METHODS: Acute ischemic stroke patients undergoing MT therapy were prospectively recruited from March 2020 to November 2022. Their heart rate was collected every hour for the initial 72 h after MT procedure, and the variability of heart rate was measured by standard deviation (SD) and coefficient of variation (CV). All-cause mortality and worsening of functional outcome (change in modified Rankin Scale (mRS) score) at 3-month were captured. Binary logistic regression was used to evaluate the association between heart rate indicators and all-cause mortality. Ordinal logistic regression was used to evaluate the association between heart rate indicators and worsening of functional outcome. RESULTS: Among 191 MT-treated patients, 51(26.7%) patients died at 3-month after stroke. Increased mean heart rate per 10-bpm, heart rate SD and CV per 5-unit were all associated with the increased risk of mortality (adjusted hazard ratio [aHR] with 95% CI: 1.29 [1.09-1.51], 1.19 [1.07-1.32], 1.14 [1.03-1.27]; respectively). Patients in the highest tertile of heart rate SD had an increased risk of mortality (4.62, 1.70-12.52). After using mRS as a continuous variable, we found increased mean heart rate per 10-bpm, heart rate SD and CV per 5-unit were associated with the worsening of functional outcome (adjusted odds ratio [aOR] with 95% CI: 1.35 [1.11-1.64], 1.27 [1.05-1.53], 1.19 [1.02-1.40]; respectively). A linear relationship was observed between mean heart rate or heart rate SD and mortality; while all of the heart rate measures in this study showed a linear relationship with the worsening of functional outcome. CONCLUSIONS: Higher mean heart rate and HRV were associated with the increased risk of 3-month all-cause mortality and worse functional outcome after MT therapy for AIS patients.


Subject(s)
Heart Rate , Ischemic Stroke , Thrombectomy , Humans , Male , Female , Aged , Heart Rate/physiology , Middle Aged , Thrombectomy/methods , Thrombectomy/statistics & numerical data , Ischemic Stroke/mortality , Ischemic Stroke/surgery , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Treatment Outcome , Aged, 80 and over , Prospective Studies , Prognosis , Stroke/mortality , Stroke/therapy , Stroke/physiopathology
10.
Cell Rep Methods ; 4(5): 100777, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38744289

ABSTRACT

Human brain tissue models and organoids are vital for studying and modeling human neurological disease. However, the high cost of long-term cultured organoids inhibits their wide-ranging application. It is therefore urgent to develop methods for the cryopreservation of brain tissue and organoids. Here, we establish a method using methylcellulose, ethylene glycol, DMSO, and Y27632 (termed MEDY) for the cryopreservation of cortical organoids without disrupting the neural cytoarchitecture or functional activity. MEDY can be applied to multiple brain-region-specific organoids, including the dorsal/ventral forebrain, spinal cord, optic vesicle brain, and epilepsy patient-derived brain organoids. Additionally, MEDY enables the cryopreservation of human brain tissue samples, and pathological features are retained after thawing. Transcriptomic analysis shows that MEDY can protect synaptic function and inhibit the endoplasmic reticulum-mediated apoptosis pathway. MEDY will enable the large-scale and reliable storage of diverse neural organoids and living brain tissue and will facilitate wide-ranging research, medical applications, and drug screening.


Subject(s)
Brain , Cryopreservation , Organoids , Humans , Organoids/drug effects , Cryopreservation/methods , Brain/drug effects , Brain/cytology , Neurons/drug effects , Neurons/physiology , Ethylene Glycol/pharmacology , Methylcellulose/chemistry , Methylcellulose/pharmacology , Dimethyl Sulfoxide/pharmacology
11.
Fish Shellfish Immunol ; 151: 109654, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810711

ABSTRACT

Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.

12.
J Geriatr Cardiol ; 21(3): 349-358, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38665285

ABSTRACT

OBJECTIVES: Stress-related glycemic indicators, including admission blood glucose (ABG), stress-hyperglycemia ratio (SHR), and glycemic gap (GG), have been associated with worse outcomes after acute myocardial infarction (AMI). However, data regarding their prognostic value in the oldest old with AMI are unavailable. Therefore, this study aimed to investigate the association of stress-related glycemic indicators with short- and long-term cardiovascular mortality (CVM) in the oldest old (≥ 80 years) with AMI. METHODS: In this prospective study, a total of 933 consecutive old patients with AMI admitted to FuWai hospital (Beijing, China) were enrolled. On admission, ABG, SHR, and GG were assessed and all participants were classified according to their quartiles. Kaplan-Meier, restricted cubic splines (RCS), and multivariate Cox regression analyses were performed to evaluate the association between these glycemic indicators and CVM within 30 days and long-term follow-up. RESULTS: During an average of 1954 patient-years of follow-up, a total of 250 cardiovascular deaths were recorded. Kaplan-Meier analyses showed the lowest CVM in quartile 1 of ABG and in quartile 2 of SHR and GG. After adjusting for potential covariates, patients in quartile 4 of ABG, SHR, and GG had a respective 1.67-fold (95% CI: 1.03-2.69; P = 0.036), 1.80-fold (95% CI: 1.16-2.79; P = 0.009), and 1.78-fold (95% CI: 1.14-2.79; P = 0.011) higher risk of long-term CVM risk compared to those in the reference groups (quartile 1 of ABG and quartile 2 of SHR and GG). Furthermore, RCS suggested a J-shaped relationship of ABG and a U-shaped association of SHR and GG with long-term CVM. Additionally, we observed similar associations of these acute glycemic parameters with 30-day CVM. CONCLUSIONS: Our data first indicated that SHR and GG consistently had a U-shaped association with both 30-day and long-term CVM among the oldest old with AMI, suggesting that they may be useful for risk stratification in this special population.

13.
Talanta ; 274: 125969, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608629

ABSTRACT

Infertility presents a widespread challenge for many families worldwide, often arising from various gynecological diseases (GDs) that hinder successful pregnancies. Current diagnostic methods for GDs have disadvantages such as low efficiency, high cost, misdiagnose, invasive injury and etc. This paper introduces a rapid, non-invasive, efficient, and straightforward analytical method that utilizes desorption, separation, and ionization mass spectrometry (DSI-MS) platform in conjunction with machine learning (ML) to detect urine metabolite fingerprints in patients with different GDs. We analyzed 257 samples from patients diagnosed with polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), endometriosis (EMS), recurrent pregnancy loss (RPL), recurrent implantation failure (RIF), and 87 samples from healthy control (HC) individuals. We identified metabolite differences and dysregulated pathways through dimensionality reduction methods, with the result of the discovery of 7 potential biomarkers for GDs diagnosis. The ML method effectively distinguished subtle differences in urine metabolite fingerprints. We anticipate that this innovative approach will offer a patient-friendly, rapid screening, and differentiation method for infertility-related GDs patients.


Subject(s)
Mass Spectrometry , Humans , Female , Mass Spectrometry/methods , Infertility, Female/urine , Infertility, Female/diagnosis , Biomarkers/urine , Adult , Machine Learning , Genital Diseases, Female/urine , Genital Diseases, Female/diagnosis
14.
J Cardiovasc Med (Hagerstown) ; 25(6): 399-419, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38625835

ABSTRACT

Hypertrophic cardiomyopathy is an important cause of heart failure and arrhythmias, including sudden death, with a major impact on the healthcare system. Genetic causes and different phenotypes are now increasingly being identified for this condition. In addition, specific medications, such as myosin inhibitors, have been recently shown as potentially able to modify its symptoms, hemodynamic abnormalities and clinical course. Our article aims to provide a comprehensive outline of the epidemiology, diagnosis and treatment of hypertrophic cardiomyopathy in the current era.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/therapy , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/epidemiology , Cardiomyopathy, Hypertrophic/complications , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology , Heart Failure/diagnosis , Heart Failure/therapy , Heart Failure/physiopathology , Heart Failure/etiology , Heart Failure/epidemiology
15.
Nephrology (Carlton) ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637907

ABSTRACT

AIM: Saliva can reflect an individual's physiological status or susceptibility to systemic disease. However, little attention has been given to salivary analysis in children with idiopathic nephrotic syndrome (INS). We aimed to perform a comprehensive analysis of saliva from INS children. METHODS: A total of 18 children (9 children with INS and 9 normal controls) were recruited. Saliva was collected from each INS patient in the acute and remission phases. 16S rRNA gene sequencing, widely targeted metabolomics, and 4D-DIA proteomics were performed. RESULTS: Actinobacteria and Firmicutes were significantly enriched in the pretreatment group compared with the normal control group, while Bacteroidota and Proteobacteria were significantly decreased. A total of 146 metabolites were identified as significantly different between INS children before treatment and normal controls, which covers 17 of 23 categories. KEGG enrichment analysis revealed three significantly enriched pathways, including ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and terpenoid backbone biosynthesis (P < 0.05). A total of 389 differentially expressed proteins were selected between INS children before treatment and normal controls. According to the KEGG and GO enrichment analyses of the KOGs, abnormal ribosome structure and function and humoral immune disorders were the most prominent differences between INS patients and normal controls in the proteomic analysis. CONCLUSION: Oral microbiota dysbiosis may modulate the metabolic profile of saliva in children with INS. It is hypothesized that children with INS might have "abnormal ribosome structure and function" and "humoral immune disorders".

16.
Small ; : e2310865, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678537

ABSTRACT

Photopharmacology, incorporating photoswitches such as azobenezes into drugs, is an emerging therapeutic method to realize spatiotemporal control of pharmacological activity by light. However, most photoswitchable molecules are triggered by UV light with limited tissue penetration, which greatly restricts the in vivo application. Here, this study proves that 131I can trigger the trans-cis photoisomerization of a reported azobenezen incorporating PROTACs (azoPROTAC). With the presence of 50 µCi mL-1 131I, the azoPROTAC can effectively down-regulate BRD4 and c-Myc levels in 4T1 cells at a similar level as it does under light irradiation (405 nm, 60 mW cm-2). What's more, the degradation of BRD4 can further benefit the 131I-based radiotherapy. The in vivo experiment proves that intratumoral co-adminstration of 131I (300 µCi) and azoPROTC (25 mg kg-1) via hydrogel not only successfully induce protein degradation in 4T1 tumor bearing-mice but also efficiently inhibit tumor growth with enhanced radiotherapeutic effect and anti-tumor immunological effect. This is the first time that a radioisotope is successfully used as a trigger in photopharmacology in a mouse model. It believes that this study will benefit photopharmacology in deep tissue.

17.
J Atheroscler Thromb ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38616111

ABSTRACT

AIM: No data are currently available regarding the association between Lp(a) and the cardiovascular outcomes in patients with coronary artery disease (CAD) according to their family history (FHx) of CAD. This study aimed to evaluate the significance of Lp(a) in predicting major adverse cardiovascular events (MACEs) in patients with chronic coronary syndrome (CCS) with or without FHx. METHODS: A total of 6056 patients with CCS were enrolled. Information on FHx was collected, and the plasma Lp(a) levels were measured. All patients were followed up regularly. The independent and joint associations of Lp(a) and FHx with the risk of MACEs, including cardiovascular death, nonfatal myocardial infarction, and stroke, were analyzed. RESULTS: With over an average of 50.35±18.58 months follow-up, 378 MACEs were recorded. A Cox regression analysis showed an elevated Lp(a) level to be an independent predictor for MACEs in patients with [hazard ratio (HR): 2.77, 95% confidence interval (CI): 1.38-5.54] or without FHx (HR: 1.35, 95% CI: 1.02-1.77). In comparison to subjects with non-elevated Lp(a) and negative FHx, patients with elevated Lp(a) alone were at a nominally higher risk of MACEs (HR: 1.26, 95% CI: 0.96-1.67), while those with both had the highest risk (HR: 1.93, 95% CI: 1.14-3.28). Moreover, adding Lp(a) to the original model increased the C-statistic by 0.048 in subjects with FHx (p=0.004) and by 0.004 in those without FHx (p=0.391). CONCLUSIONS: The present study is the first to suggest that Lp(a) could be used to predict MACEs in CCS patients with or without FHx; however, its prognostic significance was more noteworthy in patients with FHx.

18.
Lab Chip ; 24(8): 2272-2279, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38504660

ABSTRACT

A highly sensitive lateral flow immunoassay (LFIA) is developed for the enzyme-catalyzed and double-reading determination of clenbuterol (CLE), in which a new type of probe was adopted through the direct electrostatic adsorption of ultra-small copper-gold bimetallic enzyme mimics (USCGs) and monoclonal antibodies. In the assay, based on the peroxidase activity of USCG, the chromogenic substrate TMB-H2O2 was introduced to trigger its color development, and the results were compared with those before catalysis. The detection sensitivity after catalysis is 0.03 ng mL-1 under optimal circumstances, which is 6-fold better than that of the traditional Au NPs-based LFIA and 2-fold greater than that before catalysis. This approach was successfully applied to the detection of CLE in milk, pork and mutton samples with an optimum assay time of 7 min and best catalytic time of 80 s, after which satisfactory recoveries of 98.53-117.79% were obtained. Cu-Au nanoparticles as a signal tag and the use of their nanozyme properties are the first applications in the field of LFIA. This work can be a promising exhibition for the application of a cheaper substitute for HRP, ultra-small bimetallic enzyme mimics, in LFIAs.


Subject(s)
Clenbuterol , Metal Nanoparticles , Limit of Detection , Copper , Gold/chemistry , Hydrogen Peroxide , Metal Nanoparticles/chemistry , Catalysis , Immunoassay/methods
19.
Food Chem ; 447: 138928, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484547

ABSTRACT

In this study, we established a simple, rapid, and high-throughput method for the analysis and classification of propolis samples. We utilized nanoESI-MS to analyze 37 samples of propolis from China for the first time, obtaining characteristic fingerprint spectra in negative ion mode, which were then integrated with multivariate analysis to explore variations between water extract of propolis (WEP) and ethanol extract of propolis (EEP). Furthermore, we categorized propolis samples based on different climate zones and colors, screening 10 differential metabolites among propolis from various climate zones, and 11 differential metabolites among propolis samples of different color. By employing machine learning models, we achieved high-precision discrimination and prediction between samples from different climate zones and colors, achieving predictive accuracies of 95.6% and 85.6%, respectively. These results highlight the significant potential of the nanoESI-MS coupled with machine learning methodology for precise classification within the realm of food products.


Subject(s)
Ascomycota , Propolis , Propolis/chemistry , Mass Spectrometry , Climate , Machine Learning , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...