Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
Food Res Int ; 186: 114347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729697

ABSTRACT

Although Z. mioga flower buds are popular among consumers for its unique spicy flavor, high nutritional and medicinal value, there are few reports on the formation and changes of the flavor during its growth and maturation process. The understanding of the profile of volatile compounds would help to unravel the flavor formation for Z. mioga flower buds during growth. The volatile changes in Z. mioga flower buds were analyzed by GC-MS and a total of 182 volatile compounds identified, and the terpenoids accounted for the most abundant volatile substances. Almost all the identified volatiles presented an intuitive upward trend throughout the growth period and reached the maximum at the later stage of development (DS3 or DS4). Regarding the PCA and HCA results, there were significant differences found among the four stages, and the DS3 was the critical node. The top 50 differential volatiles screened by OPLS-DA and PLS-DA were all up-regulated, and the correlation analysis indicated that terpenoids might synergize with other chemical types of volatiles to jointly affect the flavor formation of Z. mioga flower buds during growth. The association network for flavor omics revealed that the most important sensory flavor for Z. mioga flower buds were woody and sweet, and the main contribution compounds for the unique flavor contained ß-guaiene, ß-farnesene, δ-cadinene and citronellyl isobutanoate. Taken together, the results of this study provided a reference for flavor quality evaluation of flower buds and determination of the best harvest period.


Subject(s)
Flowers , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Flowers/growth & development , Flowers/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Terpenes/metabolism , Terpenes/analysis
2.
Nat Nanotechnol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724611

ABSTRACT

Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination-dehalogenation-hydroxylation route involving radical-radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7-8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.

3.
Natl Sci Rev ; 11(5): nwae150, 2024 May.
Article in English | MEDLINE | ID: mdl-38803565

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.

4.
J Nanobiotechnology ; 22(1): 237, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735920

ABSTRACT

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION: In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.


Subject(s)
DNA, Single-Stranded , G-Quadruplexes , Mesenchymal Stem Cells , MicroRNAs , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Mice , DNA, Single-Stranded/chemistry , Cell Line, Tumor , Mice, Inbred C57BL , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , DNA, Circular/chemistry , Humans , Melanoma/drug therapy
5.
Sci Adv ; 10(21): eadn8696, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787943

ABSTRACT

Drinking water with micropollutants is a notable environmental concern worldwide. Membrane separation is one of the few methods capable of removing micropollutants from water. However, existing membranes face challenges in the simultaneous and efficient treatment of small-molecular and ionic contaminants because of their limited permselectivity. Here, we propose a high-efficiency water purification method using a low-pressure Janus membrane with electro-induced multi-affinity. By virtue of hydrophobic and electrostatic interactions between the functional interfaces and contaminants, the Janus membrane achieves simultaneous separation of diverse types of organics and heavy metals from water via single-pass filtration, with an approximately 100% removal efficiency, high water flux (>680 liters m-2 hour-1), and 98% lower energy consumption compared with commercial nanofiltration membranes. The electro-induced switching of interfacial affinity enables 100% regeneration of membrane performance; thus, our work paves a sustainable avenue for drinking water purification by regulating the interfacial affinity of membranes.

6.
Arab J Gastroenterol ; 25(2): 125-128, 2024 May.
Article in English | MEDLINE | ID: mdl-38705812

ABSTRACT

BACKGROUND AND STUDY AIMS: There are limited data regarding indeterminate acute liver failure (ALF). The study aims to perform a post hoc analysis using genetic methods for the ALF cases with indeterminate etiology. PATIENTS AND METHODS: Stored blood samples from these patients with indeterminate ALF were collected. Whole-exome sequencing (WES) was used to evaluate the pathogenesis of indeterminate ALF. RESULTS: A total of 16 samples from 11 adult patients and 5 pediatric patients with indeterminate ALF were available. Among the adult patients, one female patient was identified with two heterozygous variants (c.2333G > T (p.Arg778Leu) and c.2310C > G (p.Leu770 = )) in the adenosine triphosphatase copper-transporting beta (ATP7B) gene, and two male patients were found to harbor heterozygous and homozygous variants (c.686C > A (p.Pro229Gln) plus homozygousvariantA(TA)6TAAinsTA (-), andc.1456 T > G (p.Tyr486Asp) plus c.211G > A (p.Gly71Arg)) in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene. For the pediatric patients, single heterozygous variant (c.2890C > T (p.Arg964Cys)) in the polymerase gamma (POLG) gene was found in 1 male child, and two heterozygous variants (c.1909A > G (p.Lys637Glu) and c.3646G > A (p.Val1216Ile)) in the tetratricopeptide repeat domain 37 (TTC37) gene were found in 1 female child. No variants clinically associated with known liver diseases were revealed in the remaining patients. CONCLUSION: These results expand the knowledge of ALF with indeterminate etiology. WES is helpful to reveal possible candidate genes for indeterminate ALF, but incomplete consistency between the genotype and phenotype in some cases still challenge the accurate diagnosis.


Subject(s)
Copper-Transporting ATPases , Exome Sequencing , Glucuronosyltransferase , Liver Failure, Acute , Humans , Liver Failure, Acute/genetics , Liver Failure, Acute/diagnosis , Male , Female , Adult , Glucuronosyltransferase/genetics , Child , Copper-Transporting ATPases/genetics , Heterozygote , Adolescent , Middle Aged , Child, Preschool , Young Adult , Mutation , Homozygote
7.
Elife ; 122024 May 01.
Article in English | MEDLINE | ID: mdl-38690987

ABSTRACT

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Subject(s)
Chondrocytes , Congenital Microtia , Cyclic AMP-Dependent Protein Kinases , Signal Transduction , Animals , Chondrocytes/metabolism , Congenital Microtia/genetics , Congenital Microtia/metabolism , Mice , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Chondrogenesis/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics
8.
Cancer Gene Ther ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649419

ABSTRACT

Exosomes are emerging mediators of cell-cell communication, which are secreted from cells and may be delivered into recipient cells in cell biological processes. Here, we examined microRNA (miRNA) expression in esophageal squamous cell carcinoma (ESCC) cells. We performed miRNA sequencing in exosomes and cells of KYSE150 and KYSE450 cell lines. Among these differentially expressed miRNAs, 20 of the miRNAs were detected in cells and exosomes. A heat map indicated that the level of miR-451a was higher in exosomes than in ESCC cells. Furthermore, miRNA pull-down assays and combined exosomes proteomic data showed that miR-451a interacts with YWHAE. Over-expression of YWHAE leads to miR-451a accumulation in the exosomes instead of the donor cells. We found that miR-451a was sorted into exosomes. However, the biological function of miR-451a remains unclear in ESCC. Here, Dual-luciferase reporter assay was conducted and it was proved that CAB39 is a target gene of miR-451a. Moreover, CAB39 is related to TGF-ß1 from RNA-sequencing data of 155 paired of ESCC tissues and the matched tissues. Western Blot and qPCR revealed that CAB39 and TGF-ß1 were positively correlated in ESCC. Over-expression of CAB39 were cocultured with PBMCs from the blood from healthy donors. Flow cytometry assays showed that apoptotic cells were significantly reduced after CAB39 over-expression and significantly increased after treated with TGF-ß1 inhibitors. Thus, our data indicate that CAB39 weakens antitumor immunity through TGF-ß1 in ESCC. In summary, YWHAE selectively sorted miR-451a into exosomes and it can weaken antitumor immunity promotes tumor progression through CAB39.

9.
Emerg Microbes Infect ; 13(1): 2337677, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38578315

ABSTRACT

Previously, we reported a cohort of Japanese encephalitis (JE) patients with Guillain-Barré syndrome. However, the evidence linking Japanese encephalitis virus (JEV) infection and peripheral nerve injury (PNI) remains limited, especially the epidemiology, clinical presentation, diagnosis, treatment, and outcome significantly differ from traditional JE. We performed a retrospective and multicenter study of 1626 patients with JE recorded in the surveillance system of the Chinese Center for Disease Control and Prevention, spanning the years 2016-2020. Cases were classified into type 1 and type 2 JE based on whether the JE was combined with PNI or not. A comparative analysis was conducted on demographic characteristics, clinical manifestations, imaging findings, electromyography data, laboratory results, and treatment outcomes. Among 1626 laboratory confirmed JE patients, 230 (14%) were type 2 mainly located along the Yellow River in northwest China. In addition to fever, headache, and disturbance of consciousness, type 2 patients experienced acute flaccid paralysis of the limbs, as well as severe respiratory muscle paralysis. These patients presented a greater mean length of stay in hospital (children, 22 years [range, 1-34]; adults, 25 years [range, 0-183]) and intensive care unit (children, 16 years [range, 1-30]; adults, 17 years [range, 0-102]). The mortality rate was higher in type 2 patients (36/230 [16%]) compared to type 1 (67/1396 [5%]). The clinical classification of the diagnosis of JE may play a crucial role in developing a rational treatment strategy, thereby mitigating the severity of the disease and potentially reducing disability and mortality rates among patients.

10.
NPJ Regen Med ; 9(1): 14, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561335

ABSTRACT

Osteoarthritis affects 15% of people over 65 years of age. It is characterized by articular cartilage degradation and inflammation, leading to joint pain and disability. Osteoarthritis is incurable and the patients may eventually need joint replacement. An emerging treatment is mesenchymal stromal cells (MSCs), with over two hundred clinical trials being registered. However, the outcomes of these trials have fallen short of the expectation, due to heterogeneity of MSCs and uncertain mechanisms of action. It is generally believed that MSCs exert their function mainly by secreting immunomodulatory and trophic factors. Here we used knee osteoarthritis mouse model to assess the therapeutic effects of MSCs isolated from the white adipose or dermal adipose tissue of Prrx1-Cre; R26tdTomato mice and Dermo1-Cre; R26tdTomato mice. We found that the Prrx1-lineage MSCs from the white adipose tissues showed the greatest in vitro differentiation potentials among the four MSC groups and single cell profiling showed that the Prrx1-lineage MSCs contained more stem cells than the Dermo1 counterpart. Only the Prrx1-lineage cells isolated from white adipose tissues showed long-term therapeutic effectiveness on early-stage osteoarthritis models. Mechanistically, Prrx1-lineage MSCs differentiated into Col2+ chondrocytes and replaced the damage cartilage, activated Col1 expressing in resident chondrocytes, and inhibited synovial inflammation. Transcriptome analysis showed that the articular chondrocytes derived from injected MSCs expressed immunomodulatory cytokines, trophic factors, and chondrocyte-specific genes. Our study identified a MSC population genetically marked by Prrx1 that has great multipotentiality and can differentiate into chondrocytes to replace the damaged cartilage.

11.
Br J Dermatol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655652

ABSTRACT

OBJECTIVE: Psoriasis is a common, chronic inflammatory disease with unclear etiology. Keratinocytes in psoriasis are susceptible to exogenous triggers that induce inflammatory cell death. This study investigated whether GSDME-mediated pyroptosis in keratinocytes contributes to the pathogenesis of psoriasis. METHODS: Skin samples from patients with psoriasis and healthy controls were collected to evaluate the expression of GSDME, cleaved-caspase-3, and inflammatory factors. We then analyzed the data series, GSE41662, to further compare the expression of GSDME between lesional and non-lesional skin samples in those with psoriasis. In vivo, caspase-3 inhibitor and GSDME deficiency mice (Gsdme-/-) were applied to block caspase-3/GSDME activation in the imiquimod-induced psoriasis model. Skin inflammation, disease severity, and pyroptosis-related proteins were analyzed. In vitro, tumor necrosis factor-α (TNF-α)-induced caspase-3/GSDME-mediated pyroptosis in the HACAT cell line was explored. RESULTS: Our analysis of the GSE41662 data series found that GSDME were upregulated in psoriasis lesions, compared to normal skin. High levels of inflammatory cytokines such as IL-1ß, IL-6, and TNF-α were also found in psoriasis lesions. In mice of Gsdme-/- and caspase-3 inhibitor groups, the severity of skin inflammation was attenuated, and GSDME and C-caspase-3 levels decreased after imiquimod treatment. Similarly, IL-1ß, IL-6, and TNF-α were decreased in Gsdme-/- and caspase-3 inhibitor groups. In vitro, TNF-α induced HACAT cell pyroptosis through caspase-3/GSDME pathway activation, which was suppressed by blocking caspase-3 or silencing GSDME. CONCLUSION: Our study provides a novel explanation that TNF-α/caspase-3/GSDME-mediated keratinocyte pyroptosis is highly responsible for the initiation and acceleration of skin inflammation and progression of psoriasis.

12.
World J Gastroenterol ; 30(11): 1556-1571, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38617455

ABSTRACT

BACKGROUND: Hepatitis B cirrhosis (HBC) is a chronic disease characterized by irreversible diffuse liver damage and aggravated by intestinal microbial imbalance and metabolic dysfunction. Although the relationship between certain single probiotics and HBC has been explored, the impact of the complex ready-to-eat Lactobacillus paracasei N1115 (LP N1115) supplement on patients with HBC has not been determined. AIM: To compare the changes in the microbiota, inflammatory factor levels, and liver function before and after probiotic treatment in HBC patients. METHODS: This study included 160 HBC patients diagnosed at the General Hospital of Ningxia Medical University between October 2018 and December 2020. Patients were randomly divided into an intervention group that received LP N1115 supplementation and routine treatment and a control group that received routine treatment only. Fecal samples were collected at the onset and conclusion of the 12-wk intervention period. The structure of the intestinal microbiota and the levels of serological indicators, such as liver function and inflammatory factors, were assessed. RESULTS: Following LP N1115 intervention, the intestinal microbial diversity significantly increased in the intervention group (P < 0.05), and the structure of the intestinal microbiota was characterized by an increase in the proportions of probiotic microbes and a reduction in harmful bacteria. Additionally, the intervention group demonstrated notable improvements in liver function indices and significantly lower levels of inflammatory factors (P < 0.05). CONCLUSION: LP N1115 is a promising treatment for ameliorating intestinal microbial imbalance in HBC patients by modulating the structure of the intestinal microbiota, improving liver function, and reducing inflammatory factor levels.


Subject(s)
Gastrointestinal Microbiome , Hepatitis B , Lacticaseibacillus paracasei , Humans , Liver Cirrhosis/diagnosis
13.
Food Chem X ; 22: 101288, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38524779

ABSTRACT

Composition and content of volatiles, the important factors in flavor formation of edible fungi, are affected by growth process. GC-MS was performed and a total of 102 volatiles were identified in Phallus impudicus. Almost all identified volatile compounds showed an obvious upward trend at four growth period, and reached the maximum at fourth stage (PIII), of which the transition from first stage (ZP) to second stage (PI) achieved a breakthrough for 88 volatile compounds from scratch. The PCA and HCA results showed that the four stages were completely separated and appeared different, among which third stage (PII) and PIII might be the two dramatic change nodes in aroma quality. In addition, the top 50 differential metabolites were screened by OPLS-DA and PLS-DA, and correlation analysis showed that 6-undecyl alcohol, α-terpine-7-al, 2, 4-decenol, and 2-cyano-2-ethyl-butanamide, might co-regulate the flavor formation of Phallus impudicus through synergistic action of other chemical components.

14.
J Med Virol ; 96(3): e29530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38529528

ABSTRACT

Integration of hepatitis B virus (HBV) DNA into the human genome is recognized as an oncogenic factor and a barrier to hepatitis B cure. In the study, biopsy liver tissues were collected from adolescents and young adults with acute HBV infection younger than or equal to 35 years of age and from HBV-infected infant patients younger than or equal to 6 months of age. A high-throughput sequencing method was used to detect HBV DNA integration. Totally, 12 adolescents, young adults, and 6 infants were included. Among the 12 patients with acute HBV infection, immunohistochemical staining of intrahepatic hepatitis B surface antigen for all displayed negative results, and no HBV DNA integrants in the hepatocyte DNA were confirmed. All infant patients had elevated levels of alanine aminotransferase and high levels of serum HBV DNA. Numerous gene sites of hepatocyte DNA were integrated by HBV DNA for each infant patient, ranging from 120 to 430 integration sites. The fragile histidine triad gene was the high-frequency integrated site in the intragenic region for infant patients. In conclusion, hepatocyte DNA is integrated by HBV DNA in babies with active hepatitis B but seems seldom affected among adolescents and young adults with acute HBV infection. Infantile hepatitis B should be taken seriously considering abundant HBV DNA integration events.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Infant , Adolescent , Humans , Young Adult , Hepatitis B virus/genetics , DNA, Viral/genetics , Liver/pathology , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens , Genomics
15.
Environ Pollut ; 348: 123879, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548161

ABSTRACT

Desorption is a critical process in the recovery or post-treatment of adsorbents saturated with volatile organic compounds (VOCs). In this study, the thermal desorption behaviors for eight VOCs on hypercrosslinked polymeric resin (HPR) and macroporous polymeric resin (MPR) were investigated through isothermal desorption and temperature programmed desorption (TPD). Compared with MPR, HPR with more micropores exhibited a lower desorption rate constant, lower desorption efficiency and higher desorption activation energy due to the strong binding energy generated between VOCs molecules and narrow micropores. As the polarizability of VOCs increased, the desorption rate constants on two porous polymeric resins decreased, while the desorption activation energy showed an incremental trend. Excellent linear correlations were observed between VOC polarizability and desorption rate constants (R2 = 0.957 for HPR and R2 = 0.940 for MPR) as well as between VOC polarizability and desorption activation energy (R2 = 0.981 for HPR and R2 = 0.969 for MPR). Furthermore, a polyparameter linear free energy relationship (PP-LFER) was developed to explore the influences of intermolecular interactions on desorption behaviors of VOCs on porous polymeric resins. The results indicated that the dispersive interaction, which is directly related to polarizability of VOCs, was the primary factor influencing the desorption activation energy of VOCs on porous polymeric resins. The find from this study helps evaluate fleetly and availably the desorption properties of VOCs based on their polarizability.


Subject(s)
Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Porosity , Polymers/chemistry , Temperature , Adsorption
16.
Drug Des Devel Ther ; 18: 747-766, 2024.
Article in English | MEDLINE | ID: mdl-38495630

ABSTRACT

Purpose: Type 2 diabetes mellitus (T2DM) is associated with reduced insulin uptake and glucose metabolic capacity. Potentilla discolor Bunge (PDB) has been used to treat T2DM; however, the fundamental biological mechanisms remain unclear. This study aimed to understand the active ingredients, potential targets, and underlying mechanisms through which PDB treats T2DM. Methods: Components and action targets were predicted using network pharmacology and molecular docking analyses. PDB extracts were prepared and validated through pharmacological intervention in a Cg>InRK1409A diabetes Drosophila model. Network pharmacology and molecular docking analyses were used to identify the key components and core targets of PDB in the treatment of T2DM, which were subsequently verified in animal experiments. Results: Network pharmacology analysis revealed five effective compounds made up of 107 T2DM-related therapeutic targets and seven protein-protein interaction network core molecules. Molecular docking results showed that quercetin has a strong preference for interleukin-1 beta (IL1B), IL6, RAC-alpha serine/threonine-protein kinase 1 (AKT1), and cellular tumor antigen p53; kaempferol exhibited superior binding to tumor necrosis factor and AKT1; ß-sitosterol demonstrated pronounced binding to Caspase-3 (CASP3). High-performance liquid chromatography data quantified quercetin, kaempferol, and ß-sitosterol at proportions of 0.030%, 0.025%, and 0.076%, respectively. The animal experiments revealed that PDB had no effect on the development, viability, or fertility of Drosophila and it ameliorated glycolipid metabolism disorders in the diabetes Cg>InRK1409A fly. Furthermore, PDB improved the body size and weight of Drosophila, suggesting its potential to alleviate insulin resistance. Moreover, PDB improved Akt phosphorylation and suppressed CASP3 activity to improve insulin resistance in Drosophila with T2DM. Conclusion: Our findings suggest that PDB ameliorates diabetes metabolism disorders in the fly model by enhancing Akt activity and suppressing CASP3 expression. This will facilitate the development of key drug targets and a potential therapeutic strategy for the clinical treatment of T2DM and related metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Potentilla , Animals , Diabetes Mellitus, Type 2/drug therapy , Caspase 3 , Kaempferols , Drosophila , Molecular Docking Simulation , Network Pharmacology , Proto-Oncogene Proteins c-akt , Quercetin
17.
J Sci Food Agric ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466088

ABSTRACT

BACKGROUND: Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS: The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION: Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.

18.
Adv Sci (Weinh) ; 11(20): e2304326, 2024 May.
Article in English | MEDLINE | ID: mdl-38544338

ABSTRACT

Chronic atrophic gastritis (AG) is initiated mainly by Helicobacter pylori infection, which may progress to stomach cancer following the Correa's cascade. The current treatment regimen is H. pylori eradication, yet evidence is lacking that this treatment is effective on later stages of AG especially gastric gland atrophy. Here, using AG mouse model, patient samples, gastric organoids, and lineage tracing, this study unraveled gastric stem cell (GSC) defect as a crucial pathogenic factor in AG in mouse and human. Moreover, a natural peptide is isolated from a traditional Chinese medicine that activated GSCs to regenerate gastric epithelia in experimental AG models and revitalized the atrophic gastric organoids derived from patients. It is further shown that the peptide exerts its functions by stabilizing the EGF-EGFR complex and specifically activating the downstream ERK and Stat1 signaling. Overall, these findings advance the understanding of AG pathogenesis and open a new avenue for AG treatment.


Subject(s)
Disease Models, Animal , Gastritis, Atrophic , Stem Cells , Gastritis, Atrophic/drug therapy , Gastritis, Atrophic/metabolism , Animals , Mice , Humans , Stem Cells/metabolism , Stem Cells/drug effects , Medicine, Chinese Traditional/methods , Peptides/pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Helicobacter Infections/drug therapy , Chronic Disease , Signal Transduction/drug effects
19.
Case Rep Pediatr ; 2024: 5539799, 2024.
Article in English | MEDLINE | ID: mdl-38406554

ABSTRACT

Benign familial infantile seizure (BFIS) is an autosomal dominant infantile-onset epilepsy syndrome with a typically benign prognosis. It is commonly associated with heterozygous mutations of the PRRT2 gene located on chromosome 16p11.2. The frameshift heterozygous mutation (c.649dupC, p.Arg217Profs∗8) in PRRT2 is responsible for the majority of BFIS cases. In this report, we present a rare case of a girl with a confirmed clinical and genetic diagnosis of BFIS due to a frameshift heterozygous mutation in PRRT2 (c.649dupC). She exhibited typical neurodevelopment until 15 months of age, followed by an unexpected severe autistic regression. In addition to BFIS, PRRT2 mutations are also associated with paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions and paroxysmal choreoathetosis (ICCA), indicating a complex genotype-phenotype heterogeneity in PRRT2 mutations. This clinical observation highlights the possibility that BFIS patients with PRRT2 mutations may not always have a benign neurodevelopmental prognosis, emphasizing the need for long-term clinical follow-up.

20.
J Hazard Mater ; 467: 133478, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38359766

ABSTRACT

Residual antiviral drugs in wastewater may increase the risk of generating transformation products (TPs) during wastewater treatment. Therefore, chlorination behavior and toxicity evolution are essential to understand the secondary ecological risk associated with their TPs. Herein, chlorination kinetics, transformation pathways, and secondary risks of ribavirin (RBV), one of the most commonly used broad-spectrum antivirals, were investigated. The pH-dependent second-order rate constants k increased from 0.18 M-1·s-1 (pH 5.8) to 1.53 M-1·s-1 (pH 8.0) due to neutral RBV and ClO- as dominant species. 12 TPs were identified using high-resolution mass spectrometry in a nontargeted approach, of which 6 TPs were reported for the first time, and their chlorination pathways were elucidated. The luminescence inhibition rate of Vibrio fischeri exposed to chlorinated RBV solution was positively correlated with initial free active chlorine, probably due to the accumulation of toxic TPs. Quantitative structure-activity relationship prediction identified 7 TPs with elevated toxicity, concentrating on developmental toxicity and bioconcentration factors, which explained the increased toxicity of chlorinated RBV. Overall, this study highlights the urgent need to minimize the discharge of toxic chlorinated TPs into aquatic environments and contributes to environmental risk control in future pandemics and regions with high consumption of antivirals.


Subject(s)
Halogenation , Ribavirin , Ribavirin/toxicity , Halogens , Aliivibrio fischeri , Antiviral Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...