Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
mBio ; : e0146723, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948335

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur molecules, which can be catabolized by marine bacteria to release climate-active gases through the cleavage and/or demethylation pathways. The marine SAR92 clade is an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, but their ability to catabolize DMSP is untested. Three SAR92 clade strains isolated from coastal seawater in this study and the SAR92 representative strain HTCC2207 were all shown to catabolize DMSP as a carbon source. All the SAR92 clade strains exhibited DMSP lyase activity producing dimethylsulfide (DMS) and their genomes encoded a ratified DddD DMSP lyase. In contrast, only HTCC2207 and two isolated strains contained the DMSP demethylase dmdA gene and potentially simultaneously demethylated and cleaved DMSP to produce methanethiol (MeSH) and DMS. In SAR92 clade strains with dddD and dmdA, transcription of these genes was inducible by DMSP substrate. Bioinformatic analysis indicated that SAR92 clade bacteria containing and transcribing DddD and DmdA were widely distributed in global oceans, especially in polar regions. This study highlights the SAR92 clade of oligotrophic bacteria as potentially important catabolizers of DMSP and sources of the climate-active gases MeSH and DMS in marine environments, particularly in polar regions.IMPORTANCECatabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria has important impacts on the global sulfur cycle and climate. However, whether and how members of most oligotrophic bacterial groups participate in DMSP metabolism in marine environments remains largely unknown. In this study, by characterizing culturable strains, we have revealed that bacteria of the SAR92 clade, an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, can catabolize DMSP through the DMSP lyase DddD-mediated cleavage pathway and/or the DMSP demethylase DmdA-mediated demethylation pathway to produce climate-active gases dimethylsulfide and methanethiol. Additionally, we found that SAR92 clade bacteria capable of catabolizing DMSP are widely distributed in global oceans. These results indicate that SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments that have been overlooked, contributing to a better understanding of the roles and mechanisms of the oligotrophic bacteria in oceanic DMSP degradation.

2.
Article in English | MEDLINE | ID: mdl-37350580

ABSTRACT

A Gram-stain-negative, aerobic, flagellated, and long rod-shaped bacterium, designated strain SM1973T, was isolated from an intertidal sediment sample collected from the coast of Qingdao, PR China. Strain SM1973T grew at 15-37 °C and with 0-5.5 % NaCl. It reduced nitrate to nitrite and hydrolysed aesculin but did not hydrolyse casein and gelatin. The strain showed the highest 16S rRNA gene sequence similarity (98.2 %) to the type strain of Spartinivicinus ruber. The phylogenetic trees based on the 16S rRNA genes and single-copy orthologous clusters showed that strain SM1973T clustered with S. ruber, forming a separate lineage within the family Zooshikellaceae. The major cellular fatty acids were summed feature 3 (C16 : 1 ω7с and/or C16 : 1 ω6с) and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The main respiratory quinone was ubiquinone-9. The genomic DNA G+C content of strain SM1973T was 40.4 mol%. Based on the polyphasic evidence presented in this paper, strain SM1973T is considered to represent a novel species within the genus Spartinivicinus, for which the name Spartinivicinus marinus sp. nov. is proposed. The type strain is SM1973T (=MCCC 1K04833T=KCTC 72846T).


Subject(s)
Fatty Acids , Gammaproteobacteria , Fatty Acids/chemistry , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Sequence Analysis, DNA , Bacterial Typing Techniques , Gammaproteobacteria/genetics
3.
Space Med Med Eng (Beijing) ; 17(2): 103-6, 2004 Apr.
Article in Chinese | MEDLINE | ID: mdl-15909384

ABSTRACT

OBJECTIVE: To established models of confirmatory factor analysis of the emotional stability criteria of flying students, and to provide an available criteria tool for evaluating the emotional stability. METHOD: "Criterion Assessment Scale of Emotional Stability of Flying Cadets" (ACSEFC) including 9 items were compiled first by interviewing with skillful pilots or flying instructors, and then the emotional stability of 153 flying students was evaluated by these pilots or instructors. RESULT: There were high level (P<0.05) of correlation coefficients between 8 items except for item 1; three-factor design appears to be the best choice for the nine items by exploratory factor analysis; model 4 appears to have the best effect by confirmatory factor analysis. CONCLUSION: The evaluation of emotional stability of flying students can be divided into 3 parts: general manifest emotion, tense before flying and flying emotion stability.


Subject(s)
Aerospace Medicine , Aviation , Emotions , Models, Psychological , Personality Inventory/standards , Factor Analysis, Statistical , Humans , Personality , Psychometrics , Reproducibility of Results , Students/psychology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...