Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(25): e202303989, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38345999

ABSTRACT

Benzobicyclo[3.2.1]octane is a cage-like unique motif containing a bicyclo[3.2.1]octane structure fused with at least one benzene ring. It is found in various natural products that exhibit structural complexities and important biological activities. The total synthesis of natural products possessing this challenging structure has received considerable attention, and great advances have been made in this field during the past 15 years. This review summarizes thus far achieved chemical syntheses and synthetic studies of natural compounds featuring the benzobicyclo[3.2.1]octane core. It focuses on strategic approaches constructing the bridged structure, aiming to provide a useful reference for inspiring further advancements in strategies and total syntheses of natural products with such a framework.

2.
Biomater Sci ; 11(18): 6013-6034, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37522312

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Drug Delivery Systems
3.
Angew Chem Int Ed Engl ; 62(22): e202303229, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36952314

ABSTRACT

Naphthospironone A, a polyhydroxy cagelike bioactive natural product, was synthesised for the first time in this study. The spiro[bicyclo[3.2.1]octane-pyran] core was constructed by an acid-promoted epoxide-opening lactonisation and a base-induced intramolecular aldol-type cyclisation.

4.
Front Nutr ; 8: 702108, 2021.
Article in English | MEDLINE | ID: mdl-34504861

ABSTRACT

Collagen is a kind of biocompatible protein material, which is widely used in medical tissue engineering, drug delivery, cosmetics, food and other fields. Because of its wide source, low extraction cost and good physical and chemical properties, it has attracted the attention of many researchers in recent years. However, the application of collagen derived from terrestrial organisms is limited due to the existence of diseases, religious beliefs and other problems. Therefore, exploring a wider range of sources of collagen has become one of the main topics for researchers. Marine-derived collagen (MDC) stands out because it comes from a variety of sources and avoids issues such as religion. On the one hand, this paper summarized the sources, extraction methods and characteristics of MDC, and on the other hand, it summarized the application of MDC in the above fields. And on the basis of the review, we found that MDC can not only be extracted from marine organisms, but also from the wastes of some marine organisms, such as fish scales. This makes further use of seafood resources and increases the application prospect of MDC.

6.
Cell Biol Int ; 44(4): 1037-1045, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31903637

ABSTRACT

The occurrence and development of prostate cancer (PCa) is complex, and the related mechanism is not fully understood. Current studies have found that extracellular vesicles (EVs) and circular RNAs (circRNAs) have important functions in various tumours and other diseases. In this study, the detection of circRNAs in PCa showed that circ_SLC19A1 was increased in PCa cells and their secreted EVs. EVs with high expression of circ_SLC19A1 could be taken up by PCa cells, which promoted cell proliferation and invasion. The sequence of circ_SLC19A1 contained multiple binding sites for miR-497, and circ_SLC19A1 could bind directly to miR-497 in cells. The expression of miR-497 was downregulated in PCa cells, while the expression of its target gene septin 2 (SEPT2) was upregulated significantly. Transfection of circ_SLC19A1 small interfering RNA (siRNA) or miR-497 mimics could significantly inhibit the expression of SEPT2 and the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). After co-transfection of circ_SLC19A1 siRNA and miR-497 inhibitors or SEPT2 overexpression vector, the expression of SEPT2 and ERK1/2 phosphorylation levels showed no significant changes. Similar results were obtained with co-transfection of miR-497 mimics and the SEPT2 overexpression vector. Therefore, cancer cells can regulate the expression of SEPT2 through miR-497 by secreting EVs with high expression of circ_SLC19A1, thus affecting the activation of the downstream ERK1/2 pathway and ultimately regulating PCa cell growth and invasion. Therefore, EV-derived circ_SLC19A1 plays an important regulatory role in PCa and may be an important target for PCa prevention and treatment.


Subject(s)
Extracellular Vesicles/physiology , Prostatic Neoplasms/metabolism , RNA, Circular/genetics , Reduced Folate Carrier Protein/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Septins/metabolism
7.
Appl Opt ; 57(31): 9208-9214, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30461959

ABSTRACT

This paper demonstrates a band enhanced ultra-broadband terahertz absorber (UBTA) based on a high-impedance surface and cavity resonance; the absorber consists of a high-impedance surface and a metallic plate spaced by a dielectric spacing layer. Simulations indicate that ultra-broadband absorption over 90% from 4.65 to 8.86 THz is realized by the high-impedance surface. It is noted that the absorption is further broadened by inserting air cylinders (ACs), thus showing that the absorption rate exceeds 90% from 5.35 to 13.08 THz. The simulations also demonstrate that the UBTA can achieve high absorption under wider incident angles. Moreover, surface current, electric field distribution, and power loss density are simulated to expound the physical mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...