Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.281
Filter
1.
J Hazard Mater ; 474: 134783, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824776

ABSTRACT

Autotrophic microorganisms play a crucial role in soil CO2 assimilation. Although microplastic pollution is recognized as a significant global concern, its precise impact on carbon sequestration by autotrophic microorganisms in agroecosystem soil remains poorly understood. This study conducted microcosm experiments to explore how conventional polystyrene (PS) and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microplastics affect carbon fixation rates (CFRs) and the community characteristics of soil autotrophic microorganisms in paddy agroecosystems. The results showed that compared with the control groups, 0.5 % and 1 % microplastic treatments significantly reduced soil CFRs by 11.8 - 24.5 % and 18.7 - 32.3 %, respectively. PS microplastics exerted a stronger inhibition effect on CFRs than PHBV microplastics in bulk soil. However, no significant difference was observed in the inhibition of CFRs by both types of microplastics in rhizosphere soils. Additionally, PS and PHBV microplastics altered the structure of autotrophic microbial communities, resulting in more stochastically dominated assembly and looser, more fragile coexistence networks compared to control groups. Moreover, microplastics drove the changes in autotrophic microbial carbon fixation primarily through their direct interference and the indirect effect by increasing soil organic carbon levels. Our findings enhance the understanding and predictive capabilities regarding the impacts of microplastic pollution on carbon sinks in agricultural soils.

2.
J Adv Res ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825316

ABSTRACT

INTRODUCTION: The therapeutic potential of fucoidan (FUC), a natural polysaccharide, in metabolic disorders is recognized, yet its underlying mechanisms remain unclear. METHODS: We conducted investigations into the therapeutic mechanisms of FUC sourced from Sargassum fulvellum concerning metabolic disorders induced by a high-sucrose diet (HSD), employing Drosophila melanogaster and mice models. Drosophila larvae were subjected to HSD exposure to monitor growth inhibition, reduced pupation, and developmental delays. Additionally, we examined the impact of FUC on growth- and development-related hormones in Drosophila. Furthermore, we assessed the modulation of larval intestinal homeostasis by FUC, focusing on the regulation of Notch signaling. In mice, we evaluated the effects of FUC on HSD-induced impairments in intestinal epithelial barrier integrity and gut hormone secretion. RESULTS: FUC supplementation significantly enhanced pupal weight in Drosophila larvae and effectively countered HSD-induced elevation of glucose and triglyceride levels. It notably influenced the expression of growth- and development-related hormones, particularly augmenting insulin-like peptides production while mitigating larval growth retardation. FUC also modulated larval intestinal homeostasis by negatively regulating Notch signaling, thereby protecting against HSD-induced metabolic stress. In mice, FUC ameliorated HSD-induced impairments in ileum epithelial barrier integrity and gut hormone secretion. CONCLUSIONS: Our findings demonstrate the multifaceted therapeutic effects of FUC in mitigating metabolic disorders and maintaining intestinal health. FUC holds promise as a therapeutic agent, with its effects attributed partly to the sulfate group and its ability to regulate Notch signaling, emphasizing its potential for addressing metabolic disorders.

3.
Cancer Med ; 13(11): e7326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826114

ABSTRACT

BACKGROUND: Optimal adjuvant chemotherapy after laparoscopic surgery in gastric cancer (GC) patients is still undefined. We aimed to evaluate the efficacy of S-1 plus oxaliplatin (SOX) and capecitabine plus oxaliplatin (CAPOX) in patients with GC after laparoscopic gastrectomy. METHODS: A non-inferiority randomized controlled clinical trial was performed in China. Patients with advanced GC who underwent laparoscopic D2 gastrectomy were randomly assigned to receive SOX and CAPOX regimens. RESULTS: In total, 191 patients were screened between May 2018 and June 2019, and 140 (73.3%) were included in the modified intent-to-treat analysis (mITT), of whom 69 and 71 were assigned to the SOX and CAPOX groups, respectively. The SOX group had similar 3-year overall survival (OS) and disease-free survival to the CAPOX group. Subgroup analysis revealed significantly better OS in the SOX group for male patients ([HR] = 0.395; 95% [CI], 0.153-1.019; p = 0.045), age >60 (HR = 0.219; 95% [CI], 0.064-0.753; p = 0.016), tumors in the gastric antrum (HR = 0.273; 95% [CI], 0.076-0.981; p = 0.047), and moderately differentiated tumors (HR = 0.338; 95% [CI], 0.110-1.041; p = 0.041). There were no significant differences observed in terms of adverse events and recurrence patterns between the two groups. CONCLUSION: Adjuvant SOX was non-inferior to CAPOX treatments for patients with GC who underwent curative laparoscopic D2 gastrectomy. For male patients, aged >60 years, tumors in the gastric antrum, and moderately differentiated tumors, adjuvant SOX may achieve an improvement compared with CAPOX.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Drug Combinations , Gastrectomy , Laparoscopy , Oxaliplatin , Oxonic Acid , Stomach Neoplasms , Tegafur , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Male , Gastrectomy/methods , Female , Middle Aged , Laparoscopy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Oxaliplatin/therapeutic use , Oxaliplatin/administration & dosage , Tegafur/therapeutic use , Tegafur/administration & dosage , Oxonic Acid/therapeutic use , Oxonic Acid/administration & dosage , Chemotherapy, Adjuvant/methods , Capecitabine/administration & dosage , Capecitabine/therapeutic use , Aged , Adult
4.
J Asian Nat Prod Res ; : 1-17, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829012

ABSTRACT

Spirotryprostatins are representative members of medicinally interesting bioactive molecules of the spirooxindole natural products. In this communication, we present a novel enantioselective total synthesis of the spirooxindole alkaloid dihydrospirotryprostatin B. The synthesis takes advantage of copper-catalyzed tandem reaction of o-iodoanilide chiral sulfinamide derivatives with alkynone to rapidly construct the key quaternary carbon stereocenter of the natural product dihydrospirotryprostatin B.

5.
Mol Biotechnol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829503

ABSTRACT

The study aimed to elucidate the mechanisms by which sulfur dioxide (SO2) alleviates organ damage during sepsis using RNA-Seq technology. A cecal ligation and puncture (CLP) sepsis model was established in rats, and the effects of SO2 treatment on organ damage were assessed through histopathological examinations. RNA-Seq was performed to analyze differentially expressed genes (DEGs), and subsequent functional annotations and enrichment analyses were conducted. The CLP model successfully induced sepsis symptoms in rats. Histopathological evaluation revealed that SO2 treatment considerably reduced tissue damage across the heart, kidney, liver, and lungs. RNA-Seq identified 950 DEGs between treated and untreated groups, with significant enrichment in genes associated with ribosomal and translational activities, amino acid metabolism, and PI3K-Akt signaling. Furthermore, gene set enrichment analysis (GSEA) showcased enrichments in pathways related to transcriptional regulation, cellular migration, proliferation, and calcium-ion binding. In conclusion, SO2 effectively mitigates multi-organ damage induced by CLP sepsis, potentially through modulating gene expression patterns related to critical biological processes and signaling pathways. These findings highlight the therapeutic promise of SO2 in managing sepsis-induced organ damage.

6.
ArXiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38827451

ABSTRACT

The effects of ligand binding on protein structures and their in vivo functions carry numerous implications for modern biomedical research and biotechnology development efforts such as drug discovery. Although several deep learning (DL) methods and benchmarks designed for protein-ligand docking have recently been introduced, to date no prior works have systematically studied the behavior of docking methods within the practical context of (1) predicted (apo) protein structures, (2) multiple ligands concurrently binding to a given target protein, and (3) having no prior knowledge of binding pockets. To enable a deeper understanding of docking methods' real-world utility, we introduce PoseBench, the first comprehensive benchmark for practical protein-ligand docking. PoseBench enables researchers to rigorously and systematically evaluate DL docking methods for apo-to-holo protein-ligand docking and protein-ligand structure generation using both single and multi-ligand benchmark datasets, the latter of which we introduce for the first time to the DL community. Empirically, using PoseBench, we find that all recent DL docking methods but one fail to generalize to multi-ligand protein targets and also that template-based docking algorithms perform equally well or better for multi-ligand docking as recent single-ligand DL docking methods, suggesting areas of improvement for future work. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench.

7.
Sci Rep ; 14(1): 12602, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824202

ABSTRACT

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/pathology , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , RNA Processing, Post-Transcriptional , Neoplasm Grading , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers, Tumor/genetics , Gene Expression Profiling , Multiomics
8.
Integr Med Res ; 13(2): 101045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831890

ABSTRACT

Background: Post-viral olfactory dysfunction (PVOD) is the common symptoms of long COVID, lacking of effective treatments. Traditional Chinese medicine (TCM) is claimed to be effective in treating olfactory dysfunction, but the evidence has not yet been critically appraised. We conducted a systematic review to evaluate the effectiveness and safety of TCM for PVOD. Methods: We searched eight databases to identified clinical controlled studies about TCM for PVOD. The Cochrane risk of bias tools and GRADE were used to evaluate the quality of evidence. Risk ratio (RR), mean differences (MD), and 95 % confidence interval (CI), were used for effect estimation and RevMan 5.4.1 was used for data analysis. Results: Six randomized controlled trials (RCTs) (545 participants), two non-randomized controlled trials (non-RCTs) (112 participants), and one retrospective cohort study (30 participants) were included. The overall quality of included studies was low. Acupuncture (n = 8) and acupoint injection (n = 3) were the mainly used TCM therapies. Five RCTs showed a better effect in TCM group. Four trials used acupuncture, and three trials used acupoint injection. The results of two non-RCTs and one cohort study were not statistically significant. Two trials reported mild to moderate adverse events (pain and brief syncope caused by acupuncture or acupoint injection). Conclusions: Limited evidence focus on acupuncture and acupoint injection for PVOD and suggests that acupuncture and acupoint injection may be effective in improving PVOD. More well-designed trials should focus on acupuncture to confirm the benefit. Protocol registration: The protocol of this review was registered at PROSPERO: CRD42022366776.

9.
Ren Fail ; 46(1): 2338484, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832469

ABSTRACT

Critically ill COVID-19 patients may exhibit various clinical symptoms of renal dysfunction including severe Acute Kidney Injury (AKI). Currently, there is a lack of bibliometric analyses on COVID-19-related AKI. The aim of this study is to provide an overview of the current research status and hot topics regarding COVID-19 AKI. The literature was retrieved from the Web of Science Core Collection (WoSCC) database. Subsequently, we utilized Microsoft Excel, VOSviewer, Citespace, and Pajek software to revealed the current research status, emerging topics, and developmental trends pertaining to COVID-19 AKI. This study encompassed a total of 1507 studies on COVID-19 AKI. The United States, China, and Italy emerged as the leading three countries in terms of publication numbers, contributing 498 (33.05%), 229 (15.20%), and 140 (9.29%) studies, respectively. The three most active and influential institutions include Huazhong University of Science and Technology, Wuhan University and Harvard Medical School. Ronco C from Italy, holds the record for the highest number of publications, with a total of 15 papers authored. Cheng YC's work from China has garnered the highest number of citations, totaling 470 citations. The co-occurrence analysis of author keywords reveals that 'mortality', 'intensive care units', 'chronic kidney disease', 'nephrology', 'renal transplantation', 'acute respiratory distress syndrome', and 'risk factors' emerge as the primary areas of focus within the realm of COVID-19 AKI. In summary, this study analyzes the research trends in the field of COVID-19 AKI, providing a reference for further exploration and research on COVID-19 AKI mechanisms and treatment.


Subject(s)
Acute Kidney Injury , Bibliometrics , COVID-19 , Pandemics , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Coronavirus Infections/epidemiology , Coronavirus Infections/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/complications , Italy/epidemiology , Betacoronavirus , China/epidemiology , Global Health
10.
Opt Lett ; 49(9): 2217-2220, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691683

ABSTRACT

We present a multi-channel delay sampling method to extend imaging depth in high-speed swept-source optical coherence tomography (SS-OCT). A balanced detector captures interference signals, converting them into electrical signals, which are then split into N channels, each with fixed time delays determined by the length of electrical cables. Then, they are digitized by an N-channel acquisition card. A calibration procedure is utilized to compensate for non-uniform phase shifts resulting from fixed time delays. The N-channel signals are merged in k-space and resampled to obtain a linearized spectrum, which increases the sampling rate by a factor of N, thereby extending the ranging distance by N times, all without altering k-clock triggering or sacrificing other imaging performance. The signal-to-noise ratio and sensitivity within the original depth range also have been enhanced. This advancement contributes to the improvement of the overall performance of SS-OCT systems.

11.
Plant Commun ; : 100937, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693694

ABSTRACT

The crosstalk between clathrin-mediated endocytosis (CME) and autophagy pathway has been reported in mammals. However, the interconnection of CME with autophagy has not been established in plants. In this report, we showed that Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopied the Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants both in auto-immunity and nutrient sensitivity. Accordingly, the autophagy pathway was significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, we demonstrated with multiple assays that CLC2 directly interacted with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP were subjected to autophagic degradation and the degradation of GFP-ATG8h was significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneously knocking out ATG8h and ATG8i by the CRISPR/CAS9 resulted in an enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results uncovered a link between the function of CLCs and the autophagy pathway in Arabidopsis.

12.
mSystems ; : e0010924, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695565

ABSTRACT

Polymyxin is used as a last resort antibiotics for infections caused by multi-drug resistant (MDR) Gram-negative bacteria and is often combined with other antibiotics to improve clinical effectiveness. However, the synergism of colistin and other antibiotics remains obscure. Here, we revealed a notable synergy between colistin and flavomycin, which was traditionally used as an animal growth promoter and has limited activity against Gram-negative bacteria, using checkerboard assay and time-kill curve analyses. The importance of membrane penetration induced by colistin was assessed by examining the intracellular accumulation of flavomycin and its antimicrobial impact on Escherichia coli (E. coli) strains with truncated lipopolysaccharides. Besides, a mutation in the flavomycin binding site was created to confirm its role in the observed synergy. This synergy is manifested as an augmented penetration of the E. coli outer membrane by colistin, leading to increased intracellular accumulation of flavomycin and enhanced cell killing thereafter. The observed synergy was dependent on the antimicrobial activity of flavomycin, as mutation of its binding site abolished the synergy. In vivo studies confirmed the efficacy of colistin combined with flavomycin against MDR E. coli infections. This study is the first to demonstrate the synergistic effect between colistin and flavomycin, shedding light on their respective roles in this synergism. Therefore, we propose flavomycin as an adjuvant to enhance the potency of colistin against MDR Gram-negative bacteria. IMPORTANCE: Colistin is a critical antibiotic in combating multi-drug resistant Gram-negative bacteria, but the emergence of mobilized colistin resistance (mcr) undermines its effectiveness. Previous studies have found that colistin can synergy with various drugs; however, its exact mechanisms with hydrophobic drugs are still unrevealed. Generally, the membrane destruction of colistin is thought to be the essential trigger for its interactions with its partner drugs. Here, we use clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) for specifically mutating the binding site of one hydrophobic drug (flavomycin) and show that antimicrobial activity of flavomycin is critical for the synergy. Our results first give the evidence that the synergy is set off by colistin's membrane destruction and operated the final antimicrobial function by its partner drugs.

13.
BMC Oral Health ; 24(1): 518, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698370

ABSTRACT

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) is a microbial risk factor whose presence increases the risk of oral squamous cell carcinoma (OSCC) progression. However, whether it can promote the proliferation of OSCC cells remains unknown. METHODS: In this study, we investigated F. nucleatum effect on OSCC cell proliferation using in vitro and in vivo experiments. RESULTS: Our results showed that F. nucleatum promoted OSCC cell proliferation, doubling the cell count after 72 h (CCK-8 assay). Cell cycle analysis revealed G2/M phase arrest. F. nucleatum interaction with CDH1 triggered phosphorylation, upregulating downstream protein ß-catenin and activating cyclinD1 and Myc. Notably, F. nucleatum did not affect noncancerous cells, unrelated to CDH1 expression levels in CAL27 cells. Overexpression of phosphorylated CDH1 in 293T cells did not upregulate ß-catenin and cycle-related genes. In vivo BALB/c nude experiments showed increased tumor volume and Ki-67 proliferation index after F. nucleatum intervention. CONCLUSION: Our study suggests that F. nucleatum promotes OSCC cell proliferation through the CDH1/ß-catenin pathway, advancing our understanding of its role in OSCC progression and highlighting its potential as a therapeutic target.


Subject(s)
Cadherins , Carcinoma, Squamous Cell , Cell Proliferation , Fusobacterium nucleatum , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms , beta Catenin , Cadherins/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/microbiology , beta Catenin/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/microbiology , Humans , Animals , Mice , Cell Line, Tumor , Antigens, CD/metabolism , Signal Transduction
14.
Immunol Res ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722530

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia, pannus formation, and cartilage and bone destruction. Lysine-specific demethylase 1 (LSD1), an enzyme involved in transcriptional regulation, has an unclear role in synovial inflammation, fibroblast-like synoviocytes migration, and invasion during RA pathogenesis. In this study, we observed increased LSD1 expression in RA synovial tissues and in TNF-α-stimulated MH7A cells. SP2509, an LSD1 antagonist, directly reduced LSD1 expression and reversed the elevated levels of proteins associated with inflammation, apoptosis, proliferation, and autophagy induced by TNF-α. Furthermore, SP2509 inhibited the migratory capacity of MH7A cells, which was enhanced by TNF-α. In CIA models, SP2509 treatment ameliorated RA development, reducing the expression of pro-inflammatory cytokines and alleviating joint pathological symptoms. These findings underscore the significance of LSD1 in RA and propose the therapeutic potential of SP2509.

15.
Small Methods ; : e2400256, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708816

ABSTRACT

Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.

16.
Front Pharmacol ; 15: 1360633, 2024.
Article in English | MEDLINE | ID: mdl-38716236

ABSTRACT

Aims: This study aimed to synthesize the evidence of the comparative effectiveness and safety of Ophiocordyceps sinensis (OS) preparations combined with renin-angiotensin system inhibitors (RASi) for diabetic kidney disease (DKD). Methods: Eight databases were searched from their inception to May 2023. Systematic reviews (SRs) of OS preparations combined with RASi for DKD were identified. Randomized controlled trials (RCTs) from the included SRs and additional searching were performed for data pooling. Cochrane risk-of-bias 2 (RoB 2) tool and AMSTAR 2 were used to evaluate the methodological quality of RCTs and SRs, respectively. A Bayesian network meta-analysis was performed to compare the add-on effect and safety of OS preparations for DKD. The certainty of evidence was graded using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. Results: Fourteen SRs were included, whose methodological quality was assessed as high (1/14) or critically low (13/14). After combining additional searching, 157 RCTs were included, involving 13,143 participants. The quality of the RCTs showed some concerns (155/157) or high risk (2/157). Jinshuibao capsules and tablets, Bailing capsules and tablets, and Zhiling capsules were evaluated. Compared to RASi, adding either of the OS capsular preparations resulted in a decreased 24-h urinary total protein levels. OS preparations ranked differently in each outcome. Jinshuibao capsules plus RASi were beneficial in reducing urinary protein, serum creatinine, serum urea nitrogen, and blood glucose levels, with moderate-certainty evidence. No serious adverse events were observed after adding OS to RASi. Conclusion: Combining OS capsular preparations with RASi appeared to be associated with decreased urinary total protein levels in DKD patients. Further high-quality studies are needed to confirm. Systematic Review Registration: INPASY202350066.

17.
Angew Chem Int Ed Engl ; : e202403610, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721714

ABSTRACT

Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high-efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron-donating (-SH) and electron-withdrawing (-NH3+) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2-Aminoethane-1-thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n-type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25% was achieved, maintaining 95% of its initial efficiency after 500 hours of continuous maximum power point tracking.

18.
Chin Neurosurg J ; 10(1): 13, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711139

ABSTRACT

BACKGROUND: Hemodynamic factors play an important role in aneurysm initiation, growth, rupture, and recurrence, while the mechanism of the hemodynamic characteristics is still controversial. A unique model of multiple aneurysms (initiation, growth, rupture, and recurrence) is helpful to avoids the confounders and further explore the possible hemodynamic mechanisms of aneurysm in different states. METHODS: We present a model with multiple aneurysms, and including the states of initiation, growth, rupture, and recurrence, discuss the proposed mechanisms, and describe computational fluid dynamic model that was used to evaluate the likely hemodynamic effect of different states of the aneurysms. RESULTS: The hemodynamic analysis suggests that high flow impingement and high WSS distribution at normal parent artery was found before aneurysmal initiation. The WSS distribution and flow velocity were decreased in the new sac after aneurysmal growth. Low WSS was the risk hemodynamic factor for aneurysmal rupture. High flow concentration region on the neck plane after coil embolization still marked in recanalized aneurysm. CONCLUSIONS: Associations have been identified between high flow impingement and aneurysm recanalization, while low WSS is linked to the rupture of aneurysms. High flow concentration and high WSS distribution at normal artery associated with aneurysm initiation and growth, while after growth, the high-risk hemodynamics of aneurysm rupture was occurred, which is low WSS at aneurysm dome.

19.
Transl Psychiatry ; 14(1): 205, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769320

ABSTRACT

Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.


Subject(s)
Alzheimer Disease , Energy Metabolism , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteocalcin , Humans , Alzheimer Disease/blood , Alzheimer Disease/genetics , Osteocalcin/blood , Energy Metabolism/genetics , Blood Glucose/metabolism , Polymorphism, Single Nucleotide , Male , Female , Triglycerides/blood , Insulin/blood
20.
J Cell Mol Med ; 28(9): e18296, 2024 May.
Article in English | MEDLINE | ID: mdl-38702954

ABSTRACT

We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.


Subject(s)
Biomarkers , Deep Learning , Machine Learning , Macrophages , Single-Cell Analysis , Subarachnoid Hemorrhage , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/metabolism , Animals , Macrophages/metabolism , Single-Cell Analysis/methods , Rats , Biomarkers/metabolism , Male , Gene Expression Profiling , Transcriptome , Rats, Sprague-Dawley , Disease Models, Animal , Neural Networks, Computer , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...