Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 512
Filter
1.
Br J Haematol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960449

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.

2.
Theranostics ; 14(9): 3526-3547, 2024.
Article in English | MEDLINE | ID: mdl-38948071

ABSTRACT

Background: Immunotherapy has demonstrated its potential to improve the prognosis of patients with hepatocellular carcinoma (HCC); however, patients' responses to immunotherapy vary a lot. A comparative analysis of the tumor microenvironment (TME) in responders and non-responders is expected to unveil the mechanisms responsible for the immunotherapy resistance and provide potential treatment targets. Methods: We performed sequencing analyses using 10x Genomics technology on six HCC patients who responded to anti-PD-1 therapy and one HCC patient who did not respond. Additionally, we obtained single cell data from untreated, responsive, and nonresponsive HCC patients from public databases, and used part of the datasets as a validation cohort. These data were integrated using algorithms such as Harmony. An independent validation cohort was established. Furthermore, we performed spatial transcriptomic sequencing on the tumor adjacent tissues of three HCC responsive patients using 10x Genomics spatial transcriptomic technology. Additionally, we analyzed data about three HCC patients obtained from public databases. Finally, we validated our conclusions using immunofluorescence, flow cytometry, and in vivo experiments. Results: Our findings confirmed the presence of "immune barrier" partially accounting for the limited efficacy of immunotherapy. Our analysis revealed a significant increase in TREM2+ Macrophages among non-responsive patients expressing multiple immunosuppressive signals. anti-Csf1r monoclonal antibodies effectively eliminated these macrophages and augmented the therapeutic effects of anti-PD-1 therapy. TCR+ Macrophages possessed direct tumor-killing capabilities. IL1B+ cDC2 was the primary functional subtype of cDC2 cells. Absence of THEMIShi CD8+ T subtypes might diminish immunotherapeutic effects. Furthermore, CD8+ T cells entered a state of stress after anti-PD-1 treatment, which might be associated with CD8+ T cell exhaustion and senescence. Conclusions: The profiles of immune TMEs showed differences in HCC patients responsive, non-responsive and untreated. These differences might explain the discounted efficacy of immunotherapy in some HCC patients. The cells and molecules, which we found to carry unique capabilities, may be targeted to enhance immunotherapeutic outcomes in patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Programmed Cell Death 1 Receptor , Single-Cell Analysis , Tumor Microenvironment , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Tumor Microenvironment/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Animals , Male , Mice , Female , Middle Aged
3.
Mitochondrial DNA B Resour ; 9(6): 716-719, 2024.
Article in English | MEDLINE | ID: mdl-38868489

ABSTRACT

The complete mitochondrial genome of Squamanita imbachii I. Saar, is unveiled in this research for the first time. It covers 76,643 base pairs (bp) and exhibits a guanine-cytosine (GC) content of 23%. The genome includes 14 conserved protein-coding genes, 1 DNA polymerase gene, 2 ribosomal RNA gene (RNS and RNL), 25 transfer RNA (tRNA) genes and 18 open reading frames (ORFs). Phylogenetic analysis, utilizing a mitochondrial gene dataset from 15 taxa across seven families within the Agaricales order, was conducted employing the maximum-likelihood (ML) approach. This analysis identified a close phylogenetic relationship between S. imbachii and Floccularia luteovirens (Alb. & Schwein.) Pouzar 1957, positioning both within the Squamanitaceae family.

4.
Polymers (Basel) ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891547

ABSTRACT

High-temperature vapour-phase acetylation (HTVPA) is a simultaneous acetylation and heat treatment process for wood modification. This study was the first investigation into the impact of HTVPA treatment on the resistance of wood to biological degradation. In the termite resistance test, untreated wood exhibited a mass loss (MLt) of 20.3%, while HTVPA-modified wood showed a reduced MLt of 6.6-3.2%, which decreased with an increase in weight percent gain (WPG), and the termite mortality reached 95-100%. Furthermore, after a 12-week decay resistance test against brown-rot fungi (Laetiporus sulfureus and Fomitopsis pinicola), untreated wood exhibited mass loss (MLd) values of 39.6% and 54.5%, respectively, while HTVPA-modified wood exhibited MLd values of 0.2-0.9% and -0.2-0.3%, respectively, with no significant influence from WPG. Similar results were observed in decay resistance tests against white-rot fungi (Lenzites betulina and Trametes versicolor). The results of this study demonstrated that HTVPA treatment not only effectively enhanced the decay resistance of wood but also offered superior enhancement relative to separate heat treatment or acetylation processes. In addition, all the HTVPA-modified wood specimens prepared in this study met the requirements of the CNS 6717 wood preservative standard, with an MLd of less than 3% for decay-resistant materials.

5.
Article in English | MEDLINE | ID: mdl-38915288

ABSTRACT

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase expressed in hematopoietic cells. Internal-tandem duplication domain (ITD) mutation and tyrosine kinase domain (TKD) mutation are the two most common mutations in acute myeloid leukemia (AML). Post-translational modifications (PTMs) of FLT3, such as glycosylation and ubiquitination, have been shown to impact various aspects of the protein in both wild-type (WT) and mutant forms of FLT3. In this review, we describe how the glycosylation status of FLT3 affects its subcellular localization, which significantly impacts the activation of downstream signaling, and the impact of specific ubiquitination on FLT3 function and stability, which may be associated with disease progression. Moreover, potential novel therapeutic strategies involving a combination of FLT3 tyrosine kinase inhibitors and drugs targeting glycosylation or ubiquitination are discussed.

6.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836662

ABSTRACT

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Subject(s)
Autophagy , Diterpenes , Forkhead Box Protein O3 , Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Oxidative Stress , Protein Kinases , Rats, Sprague-Dawley , Stress, Mechanical , Ubiquitin-Protein Ligases , MicroRNAs/metabolism , MicroRNAs/genetics , Autophagy/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Diterpenes/pharmacology , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Male , Apoptosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Female , Adult , Disease Models, Animal
7.
J Am Chem Soc ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865282

ABSTRACT

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

8.
Med Sci Monit ; 30: e945471, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864115

ABSTRACT

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Rongfeng Zhang, Jianwei Liu, Shengpeng Yu, Dong Sun, Xiaohua Wang, Jingshu Fu, Jie Shen, Zhao Xie. Osteoprotegerin (OPG) Promotes Recruitment of Endothelial Progenitor Cells (EPCs) via CXCR4 Signaling Pathway to Improve Bone Defect Repair. Med Sci Monit, 2019; 25: 5572-5579. DOI: 10.12659/MSM.916838.


Subject(s)
Endothelial Progenitor Cells , Osteoprotegerin , Receptors, CXCR4 , Signal Transduction , Endothelial Progenitor Cells/metabolism , Receptors, CXCR4/metabolism , Osteoprotegerin/metabolism , Animals , Bone Regeneration/drug effects , Humans , Bone and Bones/metabolism , Osteogenesis/drug effects , Male , Mice , Wound Healing/drug effects
9.
Chemistry ; 30(38): e202400651, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38705845

ABSTRACT

Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr -1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

10.
Nanomaterials (Basel) ; 14(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786797

ABSTRACT

A rapid and accurate monitoring of hazardous formaldehyde (HCHO) gas is extremely essential for health protection. However, the high-power consumption and humidity interference still hinder the application of HCHO gas sensors. Hence, zeolitic imidazolate framework-8 (ZIF-8)-loaded Pt-NiO/In2O3 hollow nanofibers (ZPNiIn HNFs) were designed via the electrospinning technique followed by hydrothermal treatment, aiming to enable a synergistic advantage of the surface modification and the construction of a p-n heterostructure to improve the sensing performance of the HCHO gas sensor. The ZPNiIn HNF sensor has a response value of 52.8 to 100 ppm HCHO, a nearly 4-fold enhancement over a pristine In2O3 sensor, at a moderately low temperature of 180 °C, along with rapid response/recovery speed (8/17 s) and excellent humidity tolerance. These enhanced sensing properties can be attributed to the Pt catalysts boosting the catalytic activity, the p-n heterojunctions facilitating the chemical reaction, and the appropriate ZIF-8 loading providing a hydrophobic surface. Our research presents an effective sensing material design strategy for inspiring the development of cost-effective sensors for the accurate detection of indoor HCHO hazardous gas.

11.
Plant Cell ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819320

ABSTRACT

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.

12.
Adv Sci (Weinh) ; 11(25): e2402240, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38605604

ABSTRACT

Single atomic catalysts have shown great potential in efficiently electro-converting O2 to H2O2 with high selectivity. However, the impact of coordination environment and introduction of extra metallic aggregates on catalytic performance still remains unclear. Herein, first a series of carbon-based catalysts with embedded coupling Ni single atomic sites and corresponding metallic nanoparticles at adjacent geometry is synthesized. Careful performance evaluation reveals NiSA/NiNP-NSCNT catalyst with precisely controlled active centers of synergetic adjacent Ni-N4S single sites and crystalline Ni nanoparticles exhibits a high H2O2 selectivity over 92.7% within a wide potential range (maximum selectivity can reach 98.4%). Theoretical studies uncover that spatially coupling single atomic NiN4S sites with metallic Ni aggregates in close proximity can optimize the adsorption behavior of key intermediates *OOH to achieve a nearly ideal binding strength, which thus affording a kinetically favorable pathway for H2O2 production. This strategy of manipulating the interaction between single atoms and metallic aggregates offers a promising direction to design new high-performance catalysts for practical H2O2 electrosynthesis.

13.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38608490

ABSTRACT

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Subject(s)
Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Glycosylation , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation , HL-60 Cells , Cell Line, Tumor
14.
Int J Gen Med ; 17: 1557-1569, 2024.
Article in English | MEDLINE | ID: mdl-38680192

ABSTRACT

Purpose: To investigate the clinical application value of diagonal earlobe crease (DELC) in patients with chest pain for the diagnosis of coronary heart disease (CHD) and to construct a risk model by multivariate logistic regression. Patients and Methods: Our trial enrolled prospectively and consecutively 706 chest pain patients with suspected CHD between January 2021 to June 2023 from Chengde Central Hospital. According to coronary angiography results, they were categorized into the CHD (n=457) and non-CHD groups (n=249). Results: The trial demonstrated a significant positive relationship between DELC and CHD. Independent risk factors were sex, age, hypertension, diabetes mellitus, LP (a), Cys C, and DELC, whilst HDL-C was a protective factor, for CHD. Patients with-DELC were older than those in the without-DELC arm (P<0.001) and had a higher proportion of males than females (61.6% vs 50.0%, P=0.026). After multifactorial correction, independent risk factors for CHD included DELC (OR=1.660, 95% CI:1.153 to 2.388, P=0.006), age (OR=1.024, 95% CI:1.002 to 1.045, P=0.030), gender (OR=1.702, 95% CI:1.141 to 2.539, P=0.009), hypertension (OR=1.744, 95% CI:1.226 to 2.482, P=0.002), diabetes mellitus (OR=2.113, 95% CI:1.404 to 3.179, P<0.001), LP(a) (OR=1.010, 95% CI:1.003 to 1.017, P=0.005), Cys C (OR=3.549, 95% CI:1.605 to 7.846, P=0.002). The Hosmer and Lemeshow (H-L) test (P=0.818) suggests a high goodness of fit, and the area under the ROC curve was calculated to be 0.721 (95% CI:0.682 to 0.760, P<0.001), which demonstrates that the model has a superior diagnostic value for CHD. Conclusion: DELC is an independent risk factor for CHD after adjusting for sex, age, hypertension, diabetes mellitus, smoking index, LP (a), Cys C, and HDL-C. Our model can be used clinically for assessing the risk of CHD.

15.
Nat Commun ; 15(1): 3208, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615045

ABSTRACT

Investigations of one-dimensional segmented heteronanostructures (1D-SHs) have recently attracted much attention due to their potentials for applications resulting from their structure and synergistic effects between compositions and interfaces. Unfortunately, developing a simple, versatile and controlled synthetic method to fabricate 1D-SHs is still a challenge. Here we demonstrate a stress-induced axial ordering mechanism to describe the synthesis of 1D-SHs by a general under-stoichiometric reaction strategy. Using the continuum phase-field simulations, we elaborate a three-stage evolution process of the regular segment alternations. This strategy, accompanied by easy chemical post-transformations, enables to synthesize 25 1D-SHs, including 17 nanowire-nanowire and 8 nanowire-nanotube nanostructures with 13 elements (Ag, Te, Cu, Pt, Pb, Cd, Sb, Se, Bi, Rh, Ir, Ru, Zn) involved. This ordering evolution-driven synthesis will help to investigate the ordering reconstruction and potential applications of 1D-SHs.

16.
Adv Mater ; 36(25): e2400020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477408

ABSTRACT

Flexible thermoelectric devices hold significant promise in wearable electronics owing to their capacity for green energy generation, temperature sensing, and comfortable wear. However, the simultaneous achievement of excellent multifunctional sensing and power generation poses a challenge in these devices. Here, ordered tellurium-based hetero-nanowire films are designed for flexible and multifunctional thermoelectric devices by optimizing the Seebeck coefficient and power factor. The obtained devices can efficiently detect both object and environment temperature, thermal conductivity, heat proximity, and airflow. In addition, combining the thermoelectric units with radiative cooling materials exhibits remarkable thermal management capabilities, preventing device overheating and avoiding degradation in power generation. Impressively, this multifunctional electronics exhibits excellent resistance in extreme low earth orbit environments. The fabrication of such thermoelectric devices provides innovative insights into multimodal sensing and energy harvesting.

17.
BMC Womens Health ; 24(1): 188, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515066

ABSTRACT

BACKGROUND: Aberrant DNA methylation is a vital molecular alteration commonly detected in type I endometrial cancers (EC), and tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine (5hmC) play significant roles in DNA demethylation. However, little is known about the function and correlation of TET2 and 5hmC co-expressed in EC. This study intended to investigate the clinical significance of TET2 and 5hmC in EC. METHODS: The levels of TET2 and 5hmC were detected in 326 endometrial tissues by immumohistochemistry, and the correlation of their level was detected by Pearson analysis. The association between the levels of TET2 and 5hmC and clinicopathologic characteristics was analyzed. Prognostic value of TET2 and 5hmC was explored by Kaplan-Meier analysis. The Cox proportional hazard regression model was used for univariate and multivariate analyses. RESULTS: Based on the analysis results, TET2 protein level was positively correlated with 5hmC level in EC tissues (r = 0.801, P < 0.001). TET2+5hmC+ (high TET2 and high 5hmC) association was significantly associated with well differentiation, myometrial invasion, negative lymph node metastasis, and tumor stage in EC. Association of TET2 and 5hmC was confirmed as a prognostic factor (HR = 2.843, 95%CI = 1.226-3.605, P = 0.007) for EC patients, and EC patients with TET2-5hmC- level had poor overall survival. CONCLUSIONS: In summary, the association of TET2 and 5hmC was downregulated in EC tissues, and may be a potential poor prognostic indicator for EC patients. Combined detection of TET2 and 5hmC may be valuable for the diagnosis and prognosis of EC.


Subject(s)
5-Methylcytosine , Carcinoma, Endometrioid , Dioxygenases , Endometrial Neoplasms , Female , Humans , 5-Methylcytosine/analogs & derivatives , Carcinoma, Endometrioid/genetics , Clinical Relevance , Dioxygenases/genetics , Dioxygenases/metabolism , DNA Methylation , DNA-Binding Proteins
18.
Placenta ; 149: 18-28, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490094

ABSTRACT

INTRODUCTION: Gestational trophoblastic disease (GTD) encompasses a spectrum of rare pre-malignant and malignant entities originating from trophoblastic tissue, including partial hydatidiform mole, complete hydatidiform mole and choriocarcinoma. ß-galactoside α2,6 sialyltransferase 1 (ST6Gal1), the primary sialyltransferase responsible for the addition of α2,6 sialic acids, is strongly associated with the occurrence and development of several tumor types. However, the role of ST6Gal1/α2,6 -sialylation of trophoblast cells in GTD is still not well understood. METHODS: The expression of ST6Gal1 was investigated in GTD and human immortalized trophoblastic HTR-8/SVneo cells and human gestational choriocarcinoma JAR cells. We evaluated the effect of ST6Gal1 on proliferation and stemness of trophoblastic cells. We also examined the effect of internal miR-199a-5p on ST6Gal1 expression. The role of ST6Gal1 in regulating α2,6-sialylated integrin ß1 and its significance in the activation of integrin ß1/focal adhesion kinase (FAK) signaling pathway were also explored. RESULTS: ST6Gal1 was observed to be highly expressed in GTD. Overexpression of ST6Gal1 promoted the proliferation and stemness of HTR-8/SVneo cells, whereas knockdown of ST6Gal1 suppressed the viability and stemness of JAR cells. MiR-199a-5p targeted and inhibited the expression of ST6Gal1 in trophoblastic cells. In addition, we revealed integrin ß1 was highly α2,6-sialylated in JAR cells. Inhibition of ST6Gal1 reduced α2,6-sialylation on integrin ß1 and suppressed the integrin ß1/FAK pathway in JAR cells, thereby affecting its biological functions. DISCUSSION: This study demonstrated that ST6Gal1 plays important roles in promoting proliferation and stemness through the integrin ß1 signaling pathway in GTD. Therefore, ST6Gal1 may have a potential role in the occurrence and development of GTD.


Subject(s)
Choriocarcinoma , Gestational Trophoblastic Disease , Integrin beta1 , MicroRNAs , Female , Humans , Pregnancy , Cell Proliferation , Choriocarcinoma/pathology , Integrin beta1/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism
19.
World J Gastroenterol ; 30(3): 283-285, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38314130

ABSTRACT

Biliary dyskinesia is a relatively common gastrointestinal disease that is increasing in incidence as living standards improve. However, its underlying pathogenesis remains unclear, hindering the development of therapeutic drugs. Recently, "Expression and functional study of cholecystokinin-A receptors on the interstitial Cajal-like cells of the guinea pig common bile duct" demonstrated that cholecystokinin (CCK) regulates the contractile function of the common bile duct through interaction with the CCK-A receptor in interstitial Cajal-like cells, contributing to improving the academic understanding of biliary tract dynamics and providing emerging directions for the pathogenesis and clinical management of biliary dyskinesia. This letter provides a brief overview of the role of CCK and CCK-A receptors in biliary dyskinesia from the perspective of animal experiments and clinical studies, and discusses prospects and challenges for the clinical application of CCK and CCK-A receptors as potential therapeutic targets.


Subject(s)
Biliary Dyskinesia , Cholecystokinin , Animals , Guinea Pigs , Receptor, Cholecystokinin A , Biliary Dyskinesia/drug therapy , Common Bile Duct , Receptors, Cholecystokinin
20.
Heliyon ; 10(3): e24780, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318056

ABSTRACT

Nutritional supplements have been used to improve immune function. Condensed fuzheng extract (CFE) is a well-known traditional Chinese medicine (TCM) formula that is predominantly made from sheep placenta, Astragalus mongholicus Bunge, and Polygonatum kingianum Collett & Hemsl. However, the toxicological profile of CFE has not been determined. In this study, we investigated the acute (14 days) and sub-chronic (90 days) oral toxicities of CFE in mice and rats and the phytochemical composition of CFE. Materials and methods: For the assessment of acute toxicity, 80 ICR mice of both sexes were randomly divided into four groups. Three groups were treated with 4500, 2250 and 1125 mg/kg/d bw CFE daily (n = 10/group per sex) for 14 days; a separate group was used as control. To test the sub-chronic toxicity, male and female Sprague Dawley rats were orally administered 8150, 4075 or 2037 mg/kg bw of CFE for 90 days; a control group was included. Hematological, biochemical, and histopathological markers were tested at the end of the experiment. The chemical composition of CFE was determined by UPLC-HRMS method. Results: In both acute and sub-chronic toxicity studies, no mortalities, indications of abnormality, or treatment-related adverse effects were observed. The LD50 of CFE was higher than 4500 mg/kg. There were no significant changes in the hematological and biochemical data in the treatment group compared with the control group (p > 0.05). Histopathological analyses of the heart, liver, spleen, lungs, kidneys, thymus, testes (male rats) and ovaries (female rats) revealed no anatomical changes of each organ. Phytochemical analysis of CFE revealed the presence of flavonoids (highest abundance), phenols and alkaloids. In conclusion, our results showed that CFE is a safe and non-toxic formula. We also reported phytochemicals in CFE that may possess important pharmacological effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...