Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Expert Rev Vaccines ; 23(1): 570-583, 2024.
Article in English | MEDLINE | ID: mdl-38733272

ABSTRACT

INTRODUCTION: The mRNA vaccine technologies have progressed rapidly in recent years. The COVID-19 pandemic has accelerated the application of mRNA vaccines, with research and development and clinical trials underway for many vaccines. Application of the quality by design (QbD) framework to mRNA vaccine development and establishing standardized quality control protocols for mRNA vaccines are essential for the continued development of high-quality mRNA vaccines. AREAS COVERED: mRNA vaccines include linear mRNA, self-amplifying mRNA, and circular RNA vaccines. This article summarizes the progress of research on quality control of these three types of vaccines and presents associated challenges and considerations. EXPERT OPINION: Although there has been rapid progress in research on linear mRNA vaccines, their degradation patterns remain unclear. In addition, standardized assays for key impurities, such as residual dsRNA and T7 RNA polymerase, are still lacking. For self-amplifying mRNA vaccines, a key focus should be control of stability in vivo and in vitro. For circular RNA vaccines, standardized assays, and reference standards for determining degree of circularization should be established and optimized.


Subject(s)
COVID-19 Vaccines , COVID-19 , Quality Control , mRNA Vaccines , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/standards , COVID-19/prevention & control , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccine Development , Animals , RNA, Messenger/genetics , RNA, Messenger/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics
2.
Hortic Res ; 11(5): uhae076, 2024 May.
Article in English | MEDLINE | ID: mdl-38752224

ABSTRACT

Frequent spring frost damage threatens temperate fruit production, and breeding of late-flowering cultivars is an effective strategy for preventing such damage. However, this effort is often hampered by the lack of specific genes and markers and a lack of understanding of the mechanisms. We examined a Late-Flowering Peach (LFP) germplasm and found that its floral buds require a longer chilling period to release from their dormancy and a longer warming period to bloom than the control cultivar, two key characteristics associated with flowering time. We discovered that a 983-bp deletion in euAP2a, an APETALA2 (AP2)-related gene with known roles in regulating floral organ identity and flowering time, was primarily responsible for late flowering in LFP. This deletion disrupts an miR172 binding site, resulting in a gain-of-function mutation in euAP2a. Transcriptomic analyses revealed that at different stages of floral development, two chilling-responsive modules and four warm-responsive modules, comprising approximately 600 genes, were sequentially activated, forming a unique transcription programming. Furthermore, we found that euAP2a was transiently downregulated during the activation of these thermal-responsive modules at various stages. However, the loss of such transient, stage-specific downregulation of euAP2a caused by the deletion of miR172 binding sites resulted in the deactivation or delay of these modules in the LFP flower buds, suggesting that euAP2a acts as a transcription repressor to control floral developmental pace in peaches by modulating the thermo-responsive transcription programming. The findings shed light on the mechanisms behind late flowering in deciduous fruit trees, which is instrumental for breeding frost-tolerant cultivars.

3.
Phytomedicine ; 129: 155635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701541

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS: To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS: Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION: This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.


Subject(s)
Curcumin , Mesenchymal Stem Cells , Mice, Inbred C57BL , Microglia , Neuroprotective Agents , Olfactory Mucosa , Reperfusion Injury , Curcumin/pharmacology , Animals , Reperfusion Injury/drug therapy , Microglia/drug effects , Mice , Mesenchymal Stem Cells/drug effects , Male , Neuroprotective Agents/pharmacology , Olfactory Mucosa/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Neurons/drug effects , Necroptosis/drug effects , Disease Models, Animal
4.
Front Immunol ; 15: 1372927, 2024.
Article in English | MEDLINE | ID: mdl-38742105

ABSTRACT

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Subject(s)
Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
5.
Brain Res Bull ; 211: 110948, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614406

ABSTRACT

BACKGROUND: The treatment for cerebral ischemia remains limited, and new therapeutic strategies are urgently needed. Exosome has shown great promise for the treatment of cerebral ischemia. Steroid receptor coactivator-3 (SRC-3) was reported to be involved in neurological performances. In this study, we aimed to investigate the protective effects of mesenchymal stem cell (MSC)-derived exosomes overexpressing SRC-3 on cerebral ischemia in mice. METHODS: The mice were treated with an intracerebroventricular injection of GFP-overexpressed exosomes (GFP-exo) and SRC-3-overexpressed exosomes (SRC3-exo) in a middle cerebral artery occlusion (MCAO) model of cerebral ischemia. RESULTS: The results showed that SRC3-exo treatment significantly inhibited lipid peroxidation and ferroptosis of the neurons subjected to oxygen-glucose deprivation. It further suppressed the activation of microglia and astrocytes, and decreased the production of pro-inflammatory cytokines in the brains of MCAO mice. Furthermore, SRC3-exo treatment reduced the water content of brain tissue and infarct size, which alleviated the neurological damage and improved neurological performances in the MCAO mice. CONCLUSIONS: Our results suggest that MSC-derived exosomes expressing SRC3 can be a therapeutic strategy for cerebral ischemia by inhibiting ferroptosis.


Subject(s)
Brain Ischemia , Exosomes , Ferroptosis , Infarction, Middle Cerebral Artery , Mesenchymal Stem Cells , Nuclear Receptor Coactivator 3 , Animals , Exosomes/metabolism , Exosomes/transplantation , Mice , Ferroptosis/physiology , Mesenchymal Stem Cells/metabolism , Male , Brain Ischemia/metabolism , Brain Ischemia/therapy , Nuclear Receptor Coactivator 3/metabolism , Nuclear Receptor Coactivator 3/genetics , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Disease Models, Animal , Astrocytes/metabolism , Brain/metabolism
6.
Arthritis Res Ther ; 26(1): 61, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444034

ABSTRACT

BACKGROUND: Disease-modifying antirheumatic drugs (DMARDs) are widely used for treating rheumatoid arthritis (RA). However, there are no established biomarkers to predict a patient's response to these therapies. Prostanoids, encompassing prostaglandins, prostacyclins, and thromboxanes, are potent lipid mediators implicated in RA progression. Nevertheless, the influence of DMARDs on prostanoid biosynthesis in RA patients remains poorly understood. This study aims to assess the impact of various DMARDs on urinary prostanoids levels and to explore whether urinary prostanoid profiles correlate with disease activity or response to therapy. METHODS: This study included 152 Swedish female patients with early RA, all rheumatoid factor (RF) positive, enrolled in the NORD-STAR trial (registration number: NCT01491815). Participants were randomized into four therapeutic regimes: methotrexate (MTX) combined with (i) prednisolone (arm ACT), (ii) TNF-α blocker certolizumab pegol (arm CZP), (iii) CTLA-4Ig abatacept (arm ABA), or (iv) IL-6R blocker tocilizumab (arm TCZ). Urine samples, collected before start of treatment and at 24 weeks post-treatment, were analyzed for tetranor-prostaglandin E metabolite (tPGEM), tetranor-prostaglandin D metabolite (tPGDM), 2,3-dinor thromboxane B2 (TXBM), 2,3-dinor-6-keto prostaglandin F1a (PGIM), leukotriene E4 (LTE4) and 12-hydroxyeicosatetraenoic acid (12-HETE) using liquid chromatography-mass spectrometry (LC-MS). Generalized estimating equation (GEE) models were used to analyze the change in urinary eicosanoids and their correlations to clinical outcomes. RESULTS: Patients receiving MTX combined with CZP or TCZ exhibited significant elevations in urinary tPGEM and TXBM levels after 24 weeks of treatment. Other eicosanoids did not show significant alterations in response to any treatment. Baseline urinary eicosanoid levels did not correlate with baseline clinical disease activity index (CDAI) levels, nor with changes in CDAI from baseline to week 24. Their levels were also similar between patients who achieved CDAI remission and those with active disease at week 24. CONCLUSIONS: Treatment with anti-TNF or anti-IL6R agents in early RA patients leads to an increased systemic production of proinflammatory and prothrombotic prostanoids. However, urinary eicosanoid levels do not appear to be predictive of the response to DMARDs therapy.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Dimaprit/analogs & derivatives , Humans , Female , Prostaglandins , Antirheumatic Agents/therapeutic use , Tumor Necrosis Factor Inhibitors , Arthritis, Rheumatoid/drug therapy , Methotrexate , Certolizumab Pegol
7.
Expert Rev Vaccines ; 23(1): 362-370, 2024.
Article in English | MEDLINE | ID: mdl-38444382

ABSTRACT

INTRODUCTION: Following the coronavirus disease pandemic, respiratory mucosal vaccines that elicit both mucosal and systemic immune responses have garnered increasing attention. However, human physiological characteristics pose significant challenges in the evaluation of mucosal immunity, which directly impedes the development and application of respiratory mucosal vaccines. AREAS COVERED: This study summarizes the characteristics of immune responses in the respiratory mucosa and reviews the current status and challenges in evaluating immune response to respiratory mucosal vaccines. EXPERT OPINION: Secretory Immunoglobulin A (S-IgA) is a major effector molecule at mucosal sites and a commonly used indicator for evaluating respiratory mucosal vaccines. However, the unique physiological structure of the respiratory tract pose significant challenges for the clinical collection and detection of S-IgA. Therefore, it is imperative to develop a sampling method with high collection efficiency and acceptance, a sensitive detection method, reference materials for mucosal antibodies, and to establish a threshold for S-IgA that correlates with clinical protection. Sample collection is even more challenging when evaluating mucosal cell immunity. Therefore, a mucosal cell sampling method with high operability and high tolerance should be established. Targets of the circulatory system capable of reflecting mucosal cellular immunity should also be explored.


Subject(s)
Vaccines , Humans , Immunity, Mucosal , Immunoglobulin A, Secretory , Respiratory Mucosa , Vaccination , Antibodies, Viral
8.
J Hazard Mater ; 465: 133099, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38237434

ABSTRACT

In recent years, environmental problems caused by air pollutants have received increasing attention. Effective prediction of air pollutant concentrations is an important way to protect the public from harm. Recently, due to extreme climate and social development, the forest fire frequency has increased. During the biomass combustion process caused by forest fires, the content of particulate matter (PM) in the atmosphere increases significantly. However, most existing air pollutant concentration prediction methods do not consider the considerable impact of forest fires, and effective long-term prediction models have not been established to provide early warnings for harmful gases. Therefore, in this paper, we collected a daily air quality data set (aerodynamic diameter smaller than 2.5 µm, PM2.5) for Heilongjiang Province, China, from 2017 to 2023 and A novel Long Short-Term Memory (LSTM) model was proposed to effectively predict the situation of air pollutants. The model could automatically extract information of the effective time step from the historical data set and combine forest fire disturbance and climate data as auxiliary data to improve the model prediction ability. Moreover, we created artificial neural network (ANN) and permissive regression (support vector machine, SVR) models for comparative experiments. The results showed that the precision accuracy of the developed LSTM model is higher. Unlike the other models, the LSTM neural network model could effectively predict the concentration of air pollutants in long-term series. Regarding long-term observation missions (7 days), the proposed model performed well and stably, with R2 reaching over 88%.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Memory, Short-Term , Environmental Monitoring/methods , Air Pollution/analysis , Particulate Matter/analysis , Neural Networks, Computer
9.
Front Immunol ; 14: 1261243, 2023.
Article in English | MEDLINE | ID: mdl-37936701

ABSTRACT

Cancer vaccines drive the activation and proliferation of tumor-reactive immune cells, thereby eliciting tumor-specific immunity that kills tumor cells. Accordingly, they possess immense potential in cancer treatment. However, such vaccines are also faced with challenges related to their design and considerable differences among individual tumors. The success of messenger RNA (mRNA) vaccines against coronavirus disease 2019 has prompted the application of mRNA vaccine technology platforms to the field of oncotherapy. These platforms include linear, circular, and amplifying mRNA vaccines. In particular, amplifying mRNA vaccines are characterized by high-level and prolonged antigen gene expression at low doses. They can also stimulate specific cellular immunity, making them highly promising in cancer vaccine research. In this review, we summarize the research progress in amplifying mRNA vaccines and provide an outlook of their prospects and future directions in oncotherapy.


Subject(s)
Cancer Vaccines , Immunity, Cellular , RNA, Messenger , Antigens/genetics
10.
Stem Cell Res Ther ; 14(1): 237, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37674249

ABSTRACT

BACKGROUND AND AIMS: Refractory epilepsy is also known as drug-resistant epilepsy with limited clinical treatment. Benefitting from its safety and easy availability, olfactory mucosa mesenchymal stem cells (OM-MSCs) are considered a preferable MSC source for clinical application. This study aims to investigate whether OM-MSCs are a promising alternative source for treating refractory epilepsy clinically and uncover the mechanism by OM-MSCs administration on an epileptic mouse model. METHODS: OM-MSCs were isolated from turbinal and characterized by flow cytometry. Autologous human OM-MSCs treatment on a patient was carried out using intrathecal administration. Epileptic mouse model was established by 1 mg/kg scopolamine and 300 mg/kg pilocarpine treatment (intraperitoneal). Stereotaxic microinjection was employed to deliver the mouse OM-MSCs. Mouse electroencephalograph recording was used to investigate the seizures. Brain structure was evaluated by magnetic resonance imaging (MRI). Immunohistochemical and immunofluorescent staining of GFAP, IBA1, MAP2, TUBB3, OLIG2, CD4, CD25, and FOXP3 was carried out to investigate the neural cells and Treg cells. QRT-PCR and ELISA were performed to determine the cytokines (Il1b, Il6, Tnf, Il10) on mRNA and protein level. Y-maze, the object location test, and novel object recognition test were performed to measure the cognitive function. Footprint test, rotarod test, balance beam test, and grip strength test were conducted to evaluate the locomotive function. Von Frey testing was carried out to assess the mechanical allodynia. RESULTS: Many beneficial effects of the OM-MSC treatment on disease status, including seizure type, frequency, severity, duration, and cognitive function, and no apparent adverse effects were observed at the 8-year follow-up case. Brain MRI indicated that autologous OM-MSC treatment alleviated brain atrophy in epilepsy patients. A study in an epileptic mouse model revealed that OM-MSC treatment recruited Treg cells to the brain, inhibited inflammation, rebuilt the neural network, and improved the cognitive, locomotive, and perceptive functions of epileptic mice. CONCLUSIONS: Autologous OM-MSC treatment is efficacious for improving chronic refractory epilepsy, suggesting a future therapeutic candidate for epilepsy. TRIAL REGISTRATION: The study was registered with Chinese Clinical Trial Registry (ChiCTR2200055357).


Subject(s)
Drug Resistant Epilepsy , Mesenchymal Stem Cells , Humans , Animals , Mice , Drug Resistant Epilepsy/therapy , Brain , Neural Networks, Computer , Disease Models, Animal , Olfactory Mucosa
11.
Heliyon ; 9(7): e17874, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483835

ABSTRACT

Oxidative stress is essential in brain injury after intracerebral hemorrhage (ICH). Ferroptosis, iron-dependent oxidative cell death, overwhelms the antioxidant system. Recently, Olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) hold great potential for treating ferroptosis-mediated oxidative brain damage after ICH. However, massive grafted cell death, possibly caused by a hostile host brain microenvironment, lessens the effectiveness of OM-MSCs. Therefore, it is necessary to develop strategies to upregulate the therapeutic efficacy of OM-MSCs in ICH. Curcumin, a well-established traditional herbal substance, has potent antioxidant property. In the present study, curcumin preconditioning might enhance the anti-oxidative activity of OM-MSCs, thereby augmenting the therapeutic efficacy of OM-MSCs in ICH. In vitro model of ICH, we demonstrated that curcumin-preconditioned OM-MSCs co-culture is more effective in attenuating the cell injury, oxidative stress, and ferroptosis of neuronal cells compared to the native OM-MSCs treatment. In vivo model of ICH, transplantation of curcumin-preconditioned OM-MSCs also showed better neuroprotective effects. Moreover, curcumin pretreatment promoted the survival of OM-MSCs under a conditioned medium from hemin-insulted neurons by improving the anti-oxidative capacities of OM-MSCs. Collectively, our investigation suggested that curcumin preconditioning effectively enhanced the survival and neuroprotective effects of OM-MSCs in the ICH model by upregulating the anti-oxidative capacities of OM-MSCs. Curcumin-preconditioned OM-MSCs might be taken as a novel therapeutic strategy for treating ICH.

12.
Viruses ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: mdl-37243185

ABSTRACT

The rapid mutation and spread of SARS-CoV-2 variants recently, especially through the emerging variants Omicron BA5, BF7, XBB and BQ1, necessitate the development of universal vaccines to provide broad spectrum protection against variants. For the SARS-CoV-2 universal recombinant protein vaccines, an effective approach is necessary to design broad-spectrum antigens and combine them with novel adjuvants that can induce high immunogenicity. In this study, we designed a novel targeted retinoic acid-inducible gene-I (RIG-I) receptor 5'triphosphate double strain RNA (5'PPP dsRNA)-based vaccine adjuvant (named AT149) and combined it with the SARS-CoV-2 Delta and Omicron chimeric RBD-dimer recombinant protein (D-O RBD) to immunize mice. The results showed that AT149 activated the P65 NF-κB signaling pathway, which subsequently activated the interferon signal pathway by targeting the RIG-I receptor. The D-O RBD + AT149 and D-O RBD + aluminum hydroxide adjuvant (Al) + AT149 groups showed elevated levels of neutralizing antibodies against the authentic Delta variant, and Omicron subvariants, BA1, BA5, and BF7, pseudovirus BQ1.1, and XBB compared with D-O RBD + Al and D-O RBD + Al + CpG7909/Poly (I:C) groups at 14 d after the second immunization, respectively. In addition, D-O RBD + AT149 and D-O RBD + Al + AT149 groups presented higher levels of the T-cell-secreted IFN-γ immune response. Overall, we designed a novel targeted RIG-I receptor 5'PPP dsRNA-based vaccine adjuvant to significantly improve the immunogenicity and broad spectrum of the SARS-CoV-2 recombinant protein vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Mice , Adjuvants, Vaccine , SARS-CoV-2/genetics , COVID-19/prevention & control , Adjuvants, Immunologic , ABO Blood-Group System , Antibodies, Neutralizing , Recombinant Proteins/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus
14.
Prostaglandins Other Lipid Mediat ; 167: 106738, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37094780

ABSTRACT

Microsomal Prostaglandin E Synthase 1 (mPGES-1) is the key enzyme for the generation of the pro-inflammatory lipid mediator prostaglandin E2 (PGE2), which contributes to several pathological features of many diseases. Inhibition of mPGES-1 has been shown to be a safe and effective therapeutic strategy in various pre-clinical studies. In addition to reduced PGE2 formation, it is also suggested that the potential shunting into other protective and pro-resolving prostanoids may play an important role in resolution of inflammation. In the present study, we analysed the eicosanoid profiles in four in vitro inflammation models and compared the effects of mPGES-1 inhibition with those of cyclooxygenase-2 (Cox-2) inhibition. Our results showed a marked shift to the PGD2 pathway under mPGES-1 inhibition in A549 cells, RAW264.7 cells and mouse bone marrow-derived macrophages (BMDMs), whereas enhanced prostacyclin production was observed in rheumatoid arthritis synovial fibroblasts (RASFs) treated with an mPGES-1 inhibitor. As expected, Cox-2 inhibition completely suppressed all prostanoids. This study suggests that the therapeutic effects of mPGES-1 inhibition may be mediated by modulation of other prostanoids in addition to PGE2 reduction.


Subject(s)
Inflammation , Prostaglandins , Mice , Animals , Prostaglandin-E Synthases/metabolism , Cyclooxygenase 2/metabolism , Arachidonic Acid , Inflammation/drug therapy , Inflammation/metabolism , Dinoprostone/metabolism , Eicosanoids
15.
Front Immunol ; 14: 1107639, 2023.
Article in English | MEDLINE | ID: mdl-36865542

ABSTRACT

Neutralizing antibody (NtAb) levels are key indicators in the development and evaluation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. Establishing a unified and reliable WHO International Standard (IS) for NtAb is crucial for the calibration and harmonization of NtAb detection assays. National and other WHO secondary standards are key links in the transfer of IS to working standards but are often overlooked. The Chinese National Standard (NS) and WHO IS were developed by China and WHO in September and December 2020, respectively, the application of which prompted and coordinated sero-detection of vaccine and therapy globally. Currently, a second-generation Chinese NS is urgently required owing to the depletion of stocks and need for calibration to the WHO IS. The Chinese National Institutes for Food and Drug Control (NIFDC) developed two candidate NSs (samples 33 and 66-99) traced to the IS according to the WHO manual for the establishment of national secondary standards through a collaborative study of nine experienced labs. Either NS candidate can reduce the systematic error among different laboratories and the difference between the live virus neutralization (Neut) and pseudovirus neutralization (PsN) methods, ensuring the accuracy and comparability of NtAb test results among multiple labs and methods, especially for samples 66-99. At present, samples 66-99 have been approved as the second-generation NS, which is the first NS calibrated tracing to the IS with 580 (460-740) International Units (IU)/mL and 580 (520-640) IU/mL by Neut and PsN, respectively. The use of standards improves the reliability and comparability of NtAb detection, ensuring the continuity of the use of the IS unitage, which effectively promotes the development and application of SARS-CoV-2 vaccines in China.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Calibration , Reproducibility of Results , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , China , World Health Organization
16.
Emerg Microbes Infect ; 12(1): e2143283, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36377297

ABSTRACT

Over one billion people have received 2-3 dosages of an inactivated COVID-19 vaccine for basic immunization. Whether a booster dose should be delivered to protect against the Omicron variant and its sub-lineages, remains controversial. Here, we tested different vaccine platforms targeting the ancestral or Omicron strain as a secondary booster of the ancestral inactivated vaccine in mice. We found that the Omicron-adapted inactivated viral vaccine promoted a neutralizing antibody response against Omicron in mice. Furthermore, heterologous immunization with COVID-19 vaccines based on different platforms remarkably elevated the levels of cross- neutralizing antibody against Omicron and its sub-lineages. Omicron-adapted vaccines based on heterologous platforms should be prioritized in future vaccination strategies to control COVID-19.


Subject(s)
COVID-19 , Vaccines , Mice , Animals , Humans , Antibodies, Neutralizing , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Broadly Neutralizing Antibodies , Antibodies, Viral
17.
MedComm (2020) ; 3(4): e188, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36474858

ABSTRACT

Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID-19) vaccine candidates. To optimize the immunization strategy of the novel mRNA-based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID-19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA-RBD) and protein subunit vaccine (PS-RBD) in mice. Compared with homologous immunization of RNA-RBD or PS-RBD, heterologous prime-boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody-dependent cell-mediated cytotoxicity for "PS-RBD prime, RNA-RBD boost" and robust Th1 type cellular response for "RNA-RBD prime, PS-RBD boost". Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1-type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein-based COVID-19 vaccines.

18.
Viruses ; 14(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36366549

ABSTRACT

Small molecular nucleic acid drugs produce antiviral effects by activating pattern recognition receptors (PRRs). In this study, a small molecular nucleotide containing 5'triphosphoric acid (5'PPP) and possessing a double-stranded structure was designed and named nCoV-L. nCoV-L was found to specifically activate RIG-I, induce interferon responses, and inhibit duplication of four RNA viruses (Human enterovirus 71, Human poliovirus 1, Human coxsackievirus B5 and Influenza A virus) in cells. In vivo, nCoV-L quickly induced interferon responses and protected BALB/c suckling mice from a lethal dose of the enterovirus 71. Additionally, prophylactic administration of nCoV-L was found to reduce mouse death and relieve morbidity symptoms in a K18-hACE2 mouse lethal model of SARS-CoV-2. In summary, these findings indicate that nCoV-L activates RIG-I and quickly induces effective antiviral signals. Thus, it has potential as a broad-spectrum antiviral drug.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , DEAD-box RNA Helicases/genetics , RNA, Viral/genetics , Cell Line , DEAD Box Protein 58 , Mice, Inbred BALB C , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferons
19.
J Lipid Res ; 63(12): 100310, 2022 12.
Article in English | MEDLINE | ID: mdl-36370807

ABSTRACT

Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.


Subject(s)
Cysteine , Prostaglandins , Mice , Humans , Animals , Lipopolysaccharides/metabolism , Mast Cells , Prostaglandin-E Synthases/metabolism , Macrophages/metabolism , Cyclooxygenase 2/metabolism , Glutathione/metabolism , Glutathione Transferase/metabolism , Prostaglandin D2/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...