Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Genomics ; 116(3): 110844, 2024 05.
Article in English | MEDLINE | ID: mdl-38608737

ABSTRACT

The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.


Subject(s)
Cell Proliferation , Goats , Hair Follicle , Melatonin , Wnt Proteins , Animals , Hair Follicle/metabolism , Hair Follicle/cytology , Hair Follicle/growth & development , Goats/genetics , Goats/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Cells, Cultured
2.
Front Microbiol ; 14: 1226877, 2023.
Article in English | MEDLINE | ID: mdl-37614595

ABSTRACT

Feline calicivirus (FCV) causes upper respiratory tract diseases and even death in cats, thereby acting as a great threat to feline animals. Currently, FCV prevention is mainly achieved through vaccination, but the effectiveness of vaccination is limited. In this study, 105 FCV strain VP1 sequences with clear backgrounds were downloaded from the NCBI and subjected to a maximum likelihood method for systematic evolutionary analysis. Based on the genetic analysis results, FCV-positive sera were prepared using SPF mice and Chinese field cats as target animals, followed by a cross-neutralization assay conducted on the different genotype strains and in vivo challenge tests were carried out to further verify with the strain with best cross-protection effect. The results revealed that FCV was mainly divided into two genotypes: GI and GII. The GI genotype strains are prevalent worldwide, but all GII genotype strains were isolated from Asia, indicating a clear geographical feature. This may form resistance to FCV prevention in Asia. The in vitro neutralization assay conducted using murine serum demonstrated that the cross-protection effect varied among strains. A strain with broad-spectrum neutralization properties, DL39, was screened. This strain could produce neutralizing titers (10 × 23.08-10 × 20.25) against all strains used in this study. The antibody titers against the GI strains were 10 × 23.08-10 × 20.5 and those against the GII strains were 10 × 20.75-10 × 20.25. Preliminary evidence suggested that the antibody titer of the DL39 strain against GI was higher than that against GII. Subsequent cross-neutralization assays with cat serum prepared with the DL39 strain and each strain simultaneously yielded results similar to those described above. In vivo challenge tests revealed that the DL39 strain-immunized cats outperformed the positive controls in all measures. The results of several trials demonstrated that strain DL39 can potentially be used as a vaccine strain. The study attempted to combine the genetic diversity and phylogenetic analysis of FCV with the discovery of potential vaccines, which is crucial for developing highly effective FCV vaccines.

3.
Animals (Basel) ; 13(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36670735

ABSTRACT

Fatty acid (FA) composition has an important impact on the nutrition and flavor of meat, and on consumer health, and is receiving more attention in the sheep industry. This study aimed to evaluate the relationship between the expression levels of the CAST gene and the FA composition in the longissimus thoracis (LL) muscle, to identify novel variants of CAST, and to perform association analysis with the FA composition in grazing Sonid lambs. The correlation results showed that high expression levels of CAST are correlated with better FA compositions and classes in LL. For association studies, the results showed that c.1210C>T and c.1437G>A in LD-M, and c.2097C>T mutations are associated with some compositions and classes of FA in the LL of grazing Sonid sheep. Two missense c.646G>C (G216R) and c.1210C>T (R404C) mutations were predicted to influence the Calpain_inhib domains of CAST. Thus, the correlation results and associated mutations are expected to be genetic selection markers for the FA composition and meat quality of grazing Sonid lamb muscle and provide new insights into sheep meat quality traits influenced by the ovine CAST gene.

4.
Infect Immun ; 91(1): e0019322, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36541752

ABSTRACT

Pasteurella multocida primarily causes hemorrhagic septicemia and pneumonia in poultry and livestock. Identification of the relevant virulence factors is therefore essential for understanding its pathogenicity. Pmorf0222, encoding the PM0222 protein, is located on a specific prophage island of the pathogenic strain C48-1 of P. multocida. Its role in the pathogenesis of P. multocida infection is still unknown. The proinflammatory cytokine plays an important role in P. multocida infection; therefore, murine peritoneal exudate macrophages were treated with the purified recombinant PM0222, which induced the secretion of tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) via the Toll-like receptor 1/2 (TLR1/2)-nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inflammasome activation. Additionally, the mutant strain and complemented strain were evaluated in the mouse model with P. multocida infection, and PM0222 was identified as a virulence factor, which was secreted by outer membrane vesicles of P. multocida. Further results revealed that Pmorf0222 affected the synthesis of the capsule, adhesion, serum sensitivity, and biofilm formation. Thus, we identified Pmorf0222 as a novel virulence factor in the C48-1 strain of P. multocida, explaining the high pathogenicity of this pathogenic strain.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Mice , Animals , Pasteurella multocida/genetics , NF-kappa B/metabolism , Toll-Like Receptor 1 , Virulence Factors/genetics , Mitogen-Activated Protein Kinases/metabolism
5.
Transbound Emerg Dis ; 69(6): 3300-3316, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35964328

ABSTRACT

The number of parainfluenza virus 5 (PIV5) infection cases has increased worldwide over the past six decades; however, factors underlying this increase remain unclear. PIV5 has been emerging or re-emerging in humans and animal species. To date, no information is yet available regarding PIV5 infection in arthropod ticks. Here, we successfully isolated tick-derived PIV5 from the Ixodes persulcatus species designated as HLJ/Tick/2019 in Heilongjiang, China. Phylogenetic analysis revealed that the tick-derived PIV5 is closely related to subclade 2.2.6, which has become the dominant subtype prevalent in dogs, pigs and wildlife across China. Further experiments to understand the importance of this virus as an infectious vector revealed that a ferret animal model experimentally infected with Tick/HLJ/2019 via the oronasal and ocular inoculation routes developed moderate respiratory distress with pneumonia and neurologic tissue damage from inflammation for the first time. Further surveillance of PIV5 in vectors of viral transmission is necessary to enhance our knowledge of its ecology in reservoirs and facilitate the control of re-emerging diseases.


Subject(s)
Ixodes , Parainfluenza Virus 5 , Animals , Dogs , Humans , Ferrets , Ixodes/virology , Parainfluenza Virus 5/classification , Parainfluenza Virus 5/genetics , Parainfluenza Virus 5/isolation & purification , Phylogeny , Rubulavirus Infections/epidemiology , Rubulavirus Infections/pathology , Rubulavirus Infections/virology , Swine
6.
J Neurosci Methods ; 370: 109476, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35007653

ABSTRACT

BACKGROUND: Astrocytes are considered key players in neuroimmunopathological processes, and they play a certain role in neuroinflammation. Rodent primary astrocyte cultures are commonly used in the study of human neuroinflammation. However, gene sequence homologies are closer between humans and dogs than between humans and rodents. NEW METHOD: We established protocols to isolate astrocytes from the canine forebrain. Cerebral hemispheres of 3-4-week-old dogs were used. The isolation procedure included the use of the Neural Tissue Dissociation Kit P, demyelination by the magnetic bead method, and separation and preparation by differential adhesion. RESULTS: We found a 96% astrocyte purification rate after isolation by differential adhesion. Purified canine astrocytes increased the secretion of interleukin-1ß, interleukin-6, and tumor necrosis factor-alpha, and increased the expression of glial fibrillary acidic protein after lipopolysaccharide stimulation. We sequenced the transcriptome of the purified canine astrocytes and analyzed the differentially expressed genes among the rodent, human, and canine astrocytes. Transcriptome profiling and gene ontology analysis of the genes co-expressed in humans and canines indicate that human and canine astrocytes may be different from their rodent counterparts in terms of mediated interactions with metals. COMPARED WITH THE EXISTING METHODS: The cells prepared by our method allow for the rapid separation of astrocytes with a relatively small resource scheme. The method also retains the cell phenotype and has an in vitro culture lifetime of approximately 2-3 months. CONCLUSION: We established a method for preparing canine astrocytes with high purity, which can be used to study the biological function of astrocytes in vitro.


Subject(s)
Astrocytes , Cerebral Cortex , Animals , Astrocytes/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Dogs , Glial Fibrillary Acidic Protein/metabolism , Interleukin-6/genetics , Lipopolysaccharides/metabolism , Transcriptome
7.
Appl Microbiol Biotechnol ; 106(4): 1651-1661, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35089398

ABSTRACT

Feline calicivirus (FCV) has a single-stranded, positive-sense RNA genome, and it is responsible for many infectious respiratory diseases in cats. In addition, more worryingly, highly virulent strains of FCV can cause high mortality in felines. Therefore, a rapid and reliable diagnosis tool plays an important role in controlling the outbreak of FCV. In this study, enzymatic recombinase amplification (ERA) assay combined with lateral flow dipstick (LFD) was developed for the detection of FCV, targeting a relatively conversed position of FCV-ORF1. The results showed that the optimal reaction condition was at 40 °C for 30 min. ERA-LFD method was highly sensitive with the detection limit as low as 3.2 TCID50 of FCV RNA per reaction. The specificity analysis demonstrated no cross-reactivity with feline parvovirus (FPV), feline herpesvirus (FHV) and feline infectious peritonitis virus (FIPV). ERA-LFD was highly repeatable and reproducible, with the intra-assay and inter-assay coefficients of variation for this method both less than 7%. The general test showed that all the recombinant plasmids with known mutant sites and FCV strains with different mutant sites stored in our laboratory were all detected by this method. Of the 23 samples, 14 samples were tested positive for FCV by ERA-LFD and RT-qPCR, respectively. In summary, ERA-LFD assay was a fast, accurate and convenient diagnosis tool for the detection of FCV. KEY POINTS: • The detection principle of ERA-LFD was introduced. • Almost all the currently known FCV strains can be detected. • ERA-LFD is easy to operate and can be used for field detection.


Subject(s)
Caliciviridae Infections , Calicivirus, Feline , Communicable Diseases , Animals , Caliciviridae Infections/diagnosis , Caliciviridae Infections/veterinary , Calicivirus, Feline/genetics , Cats , Real-Time Polymerase Chain Reaction , Recombinases
8.
Front Genet ; 12: 665834, 2021.
Article in English | MEDLINE | ID: mdl-34306011

ABSTRACT

Secondary hair follicle growth in cashmere goats has seasonal cycle changes, and melatonin (MT) has a regulatory effect on the cashmere growth cycle. In this study, the growth length of cashmere was measured by implanting MT in live cashmere goats. The results indicated that the continuous implantation of MT promoted cashmere to enter the anagen 2 months earlier and induce secondary hair follicle development. HE staining of skin tissues showed that the number of secondary hair follicles in the MT-implanted goats was significantly higher than that in the control goats (P < 0.05). Transcriptome sequencing of the skin tissue of cashmere goats was used to identify differentially expressed genes: 532 in February, 641 in October, and 305 in December. Fluorescence quantitative PCR and Western blotting results showed that MT had a significant effect on the expression of Wnt10b, ß-catenin, and proteins in the skin tissue of Inner Mongolia cashmere goats. This finding suggested that MT alters the cycle of secondary hair follicle development by changing the expression of related genes. This research lays the foundation for further study on the mechanism by which MT regulates cashmere growth.

9.
Ticks Tick Borne Dis ; 12(1): 101554, 2021 01.
Article in English | MEDLINE | ID: mdl-33002807

ABSTRACT

Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms and considered to be a valuable targets for the treatment of various diseases, including cancer, malaria, and bacterial infections. However, MetAPs have not been reported in hard ticks (family Ixodidae), and their bioinformatics characterisation in tick's genome sequences is limited. In this study, we cloned, identified, and characterised a novel MetAP from Ixodes persulcatus, a vector for pathogens causing Lyme borreliosis and tick-borne encephalitis. The sequence analysis showed that I. persulcatus MetAP was a type 1 enzyme carrying C-terminal motifs conserved in the M24A family of metallopeptidases. Protein-protein docking simulations using human MetAP revealed conservation of substrate and metal-binding residues in the catalytic site cleft of the novel enzyme, which was designated IpMetAP. Recombinant IpMetAP expressed in Escherichia coli revealed its significant enzymatic activity with the synthetic substrate H-Met-4-methyl-coumaryl-7-amide at pH 7.5 with Km of 0.014 mM, kcat of 0.25 s-1, and overall catalytic efficiency (kcat/Km) of 18.36 mM-1 s-1. The activity of IpMetAP was enhanced by the addition of divalent cations Mn2+ and Co2+ and significantly inhibited by EDTA and bestatin. Site-directed mutagenesis of conserved amino acids indicated that the substitution of metal-binding residues D226 and H288 completely abolished the IpMetAP enzymatic activity, whereas that of the other sites had only moderate effects on substrate hydrolysis. The catalytic properties of IpMetAP suggest that the enzyme behaves similar to other MetAPs and such characterization expands our knowledge of aminopeptidases and protein metabolism of tick.


Subject(s)
Aminopeptidases/genetics , Arthropod Proteins/genetics , Ixodes/genetics , Amino Acid Sequence , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , China , Ixodes/metabolism , Molecular Docking Simulation , Phylogeny , Protein Domains , Sequence Alignment
10.
Genes (Basel) ; 11(4)2020 03 30.
Article in English | MEDLINE | ID: mdl-32235645

ABSTRACT

Litter size is an economically important trait in sheep breeding. The objectives of this study were as follows: (1) to ascertain if any of the 19 known variants in the BMPRIB, BMP15, and GDF9 genes are present and associated with the litter size of Mongolia sheep; (2) to identify novel variants in GDF9 and perform association analysis; and (3) to validate the effects of these GDF9 promoter variants on the activity of the gene. The results of the 19 known variants showed that the FecBB affected the litter size of Mongolia sheep (p < 0.001). The association analysis results of novel variants showed that the g.46544883A>G (GenBank accession: NC_040256, the same below) in the 3' untranslated region (3' UTR), the c.1040T>C (Phe347Ser) in the exon 2, and the g.46547859C>T SNP in the promotor of GDF9 were significantly associated with litter size of Mongolia ewes (p < 0.01, p < 0.05, and p < 0.001, respectively). In addition, the GDF9 promoter activity analysis showed that the C allele at the -332 position (g.46547859C>T) could decrease luciferase activity compared with the T allele (p < 0.01). Our findings may facilitate effective marker-assisted selection to increase litter size in Mongolia sheep populations, as well as bring new insights into GDF9 expression.


Subject(s)
Growth Differentiation Factor 9/genetics , Litter Size/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Animals , Female , Genotype , Pregnancy , Sheep
11.
Arch Virol ; 164(8): 2159-2164, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31152250

ABSTRACT

Canine enteric coronaviruses (CCoVs) are important enteric pathogens of dogs. CCoVs with different variations are typically pantropic and pathogenic in dogs. In this study, we isolated a CCoV, designated HLJ-073, from a dead 6-week-old male Pekingese with gross lesions and diarrhea. Interestingly, sequence analysis suggested that HLJ-073 contained a 350-nt deletion in ORF3abc compared with reference CCoV isolates, resulting in the loss of portions of ORF3a and ORF3c and the complete loss of ORF3b. Phylogenetic analysis based on the S gene showed that HLJ-073 was more closely related to members of the FCoV II cluster than to members of the CCoV I or CCoV II cluster. Furthermore, recombination analysis suggested that HLJ-073 originated from the recombination of FCoV 79-1683 and CCoV A76, which were both isolated in the United States. Cell tropism experiments suggested that HLJ-073 could effectively replicate in canine macrophages/monocytes and human THP-1 cells. This is the first report of the isolation of strain HLJ-073 in China, and this virus has biological characteristics that are different from those of other reported CCoVs.


Subject(s)
Coronavirus, Canine/genetics , Sequence Deletion/genetics , Animals , Cells, Cultured , China , Coronavirus Infections/virology , Diarrhea/virology , Dog Diseases/virology , Dogs , Humans , Male , Phylogeny , Sequence Analysis, DNA/methods , Spike Glycoprotein, Coronavirus/genetics , THP-1 Cells
12.
Biomed Res Int ; 2018: 2739830, 2018.
Article in English | MEDLINE | ID: mdl-30009167

ABSTRACT

Interferons (IFNs) can inhibit most, if not all, viral infections by eliciting the transcription of hundreds of interferon-stimulated genes (ISGs). Feline calicivirus (FCV) is a highly contagious pathogen of cats and a surrogate for Norwalk virus. Interferon efficiently inhibits the replication of FCV, but the mechanism of the antiviral activity is poorly understood. Here, we evaluated the anti-FCV activity of ten ISGs, whose antiviral activities were previously reported. The results showed that interferon regulatory factor 1 (IRF1) can significantly inhibit the replication of FCV, whereas the other ISGs tested in this study failed. Further, we found that IRF1 was localized in the nucleus and efficiently activated IFN-ß and the ISRE promoter. IRF1 can trigger the production of endogenous interferon and the expression of ISGs, suggesting that IRF1 can positively regulate IFN signalling. Importantly, the mRNA and protein levels of IRF1 were reduced upon FCV infection, which may be a new strategy for FCV to evade the innate immune system. Finally, the antiviral activity of IRF1 against feline panleukopenia virus, feline herpesvirus, and feline infectious peritonitis virus was demonstrated. These data indicate that feline IRF1 plays an important role in regulating the host type I IFN response and inhibiting feline viral infections.


Subject(s)
Antiviral Agents/pharmacology , Calicivirus, Feline/immunology , Interferon Regulatory Factor-1/immunology , Virus Replication , Animals , Caliciviridae Infections/immunology , Caliciviridae Infections/veterinary , Cat Diseases/immunology , Cats , Viruses
13.
J Virol Methods ; 262: 61-64, 2018 12.
Article in English | MEDLINE | ID: mdl-30016702

ABSTRACT

Mammalian reovirus (MRV) infects many species. Over the past decades, MRV infections in pigs have been reported, and several highly pathogenic MRV strains have recently been isolated in the United States. In this study, an indirect enzyme-linked immunosorbent assay (ELISA) against the σ1 protein from a serotype 3 reovirus strain (MPC/04) was established to detect antibodies in pigs. The assay did not react with antisera against other pig pathogens and was consistent with the indirect immunofluorescence assay (IFA) and virus neutralization test (VNT). In conclusion, the assay is specific and highly sensitive, providing a method for large-scale monitoring of the serotype 3 MRV infection epidemiology in pigs.


Subject(s)
Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/methods , Reoviridae Infections/veterinary , Reoviridae/immunology , Swine Diseases/diagnosis , Animals , Fluorescent Antibody Technique, Indirect , Neutralization Tests , Reoviridae/isolation & purification , Reoviridae Infections/diagnosis , Reoviridae Infections/immunology , Serogroup , Swine/virology , Swine Diseases/virology , Viral Fusion Proteins/immunology
14.
Vet Microbiol ; 213: 15-20, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29291998

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV) is responsible for rabbit hemorrhagic disease (RHD), which is an acute, lethal and highly contagious disease in both wild and domestic rabbits. Although current vaccines are highly effective for controlling RHD, they are derived from infected rabbit livers and their use is thus associated with safety and animal-welfare concerns. In this study, we generated a recombinant lentogenic canine adenovirus type 2 (CAV2) vector expressing the RHDV vp60 gene, named rCAV2-VP60. rCAV2-VP60 expressed VP60 protein in Madin-Darby canine kidney cells as demonstrated by western blot and immunofluorescence assay. Polymerase chain reaction confirmed that the vp60 gene was successfully inserted into rCAV2-VP60 and was still detectable after 20 passages, indicating its stable genetic character. We evaluated the feasibility of rCAV2-VP60 as a live-virus-vectored RHD vaccine in rabbits. rCAV2-VP60 significantly induced specific antibodies to RHDV and provided effective protection against RHDV lethal challenge. These results suggest that rCAV2 expressing RHDV VP60 could be a safe and efficient candidate vaccine against RHDV in rabbits.


Subject(s)
Adenoviruses, Canine/genetics , Caliciviridae Infections/prevention & control , Hemorrhagic Disease Virus, Rabbit/immunology , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Adenoviruses, Canine/metabolism , Animals , Blotting, Western , Caliciviridae Infections/virology , Dogs , Feasibility Studies , Gene Expression , Genetic Vectors , Hemorrhagic Disease Virus, Rabbit/genetics , Madin Darby Canine Kidney Cells , Rabbits , Recombinant Proteins , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
15.
Biomed Res Int ; 2017: 7089091, 2017.
Article in English | MEDLINE | ID: mdl-29201911

ABSTRACT

Coronaviruses (CoVs), such as human coronavirus NL63 (HCoV-NL63), severe acute respiratory syndrome CoV (SARS-CoV), murine hepatitis virus (MHV), porcine epidemic diarrhea virus (PEDV), and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), encode papain-like (PL) proteases that inhibit Sendai virus- (SeV-) induced interferon (IFN-ß) production. Recently, the crystal structure of transmissible gastroenteritis virus (TGEV) PL1 has been solved, which was similar to that of SARS-CoV PL2pro, which may antagonize host innate immunity. However, very little is known about whether TGEV PL1 can antagonize host innate immune response. Here, we presented evidence that TGEV PL1 encoded by the replicase gene could suppress the IFN-ß expression and inhibit the nuclear translocation of interferon regulatory factor 3 (IRF3). The ability to antagonize IFN-ß production was dependent on the intact catalytic activity of PL1. Furthermore, TGEV PL1 exerted deubiquitinase (DUB) activity which strongly inhibited the retinoic acid-induced gene I- (RIG-1-) and stimulator of interferon gene- (STING-) dependent IFN expression. Our data collectively suggest that TGEV PL1 can inhibit the IFN-ß expression and interfere with RIG-1- and STING-mediated signaling through a viral DUB activity. Our study has yielded strong evidence for the TGEV PL1 mechanisms that counteract the host innate immunity.


Subject(s)
Host-Pathogen Interactions/genetics , Immunity, Innate/genetics , Interferon-beta/genetics , Papain/genetics , Transmissible gastroenteritis virus/genetics , Animals , Coronavirus Papain-Like Proteases , DEAD Box Protein 58/genetics , Deubiquitinating Enzymes/genetics , HEK293 Cells , Humans , Interferon Regulatory Factor-3/genetics , Interferon-beta/biosynthesis , Membrane Proteins/genetics , Papain/chemistry , Papain/immunology , RNA-Dependent RNA Polymerase/genetics , Receptors, Immunologic , Swine , Transmissible gastroenteritis virus/chemistry , Transmissible gastroenteritis virus/pathogenicity , Ubiquitin/genetics
16.
Front Microbiol ; 8: 961, 2017.
Article in English | MEDLINE | ID: mdl-28611758

ABSTRACT

Pasteurella multocida, a Gram-negative opportunistic pathogen, has led to a broad range of diseases in mammals and birds, including fowl cholera in poultry, pneumonia and atrophic rhinitis in swine and rabbit, hemorrhagic septicemia in cattle, and bite infections in humans. In order to better interpret the genetic diversity and adaptation evolution of this pathogen, seven genomes of P. multocida strains isolated from fowls, rabbit and pigs were determined by using high-throughput sequencing approach. Together with publicly available P. multocida genomes, evolutionary features were systematically analyzed in this study. Clustering of 70,565 protein-coding genes showed that the pangenome of 33 P. multocida strains was composed of 1,602 core genes, 1,364 dispensable genes, and 1,070 strain-specific genes. Of these, we identified a full spectrum of genes related to virulence factors and revealed genetic diversity of these potential virulence markers across P. multocida strains, e.g., bcbAB, fcbC, lipA, bexDCA, ctrCD, lgtA, lgtC, lic2A involved in biogenesis of surface polysaccharides, hsf encoding autotransporter adhesin, and fhaB encoding filamentous haemagglutinin. Furthermore, based on genome-wide positive selection scanning, a total of 35 genes were subject to strong selection pressure. Extensive analyses of protein subcellular location indicated that membrane-associated genes were highly abundant among all positively selected genes. The detected amino acid sites undergoing adaptive selection were preferably located in extracellular space, perhaps associated with bacterial evasion of host immune responses. Our findings shed more light on conservation and distribution of virulence-associated genes across P. multocida strains. Meanwhile, this study provides a genetic context for future researches on the mechanism of adaptive evolution in P. multocida.

17.
Viruses ; 9(1)2017 01 23.
Article in English | MEDLINE | ID: mdl-28125002

ABSTRACT

Feline panleucopenia virus (FPV) is a highly infectious pathogen that causes severe diseases in pets, economically important animals and wildlife in China. Although FPV was identified several years ago, little is known about how it overcomes the host innate immunity. In the present study, we demonstrated that infection with the FPV strain Philips-Roxane failed to activate the interferon ß (IFN-ß) pathway but could antagonize the induction of IFN stimulated by Sendai virus (SeV) in F81 cells. Subsequently, by screening FPV nonstructural and structural proteins, we found that only nonstructural protein 2 (NS2) significantly suppressed IFN expression. We demonstrated that the inhibition of SeV-induced IFN-ß production by FPV NS2 depended on the obstruction of the IFN regulatory factor 3 (IRF3) signaling pathway. Further, we verified that NS2 was able to target the serine/threonine-protein kinase TBK1 and prevent it from being recruited by stimulator of interferon genes (STING) protein, which disrupted the phosphorylation of the downstream protein IRF3. Finally, we identified that the C-terminus plus the coiled coil domain are the key domains of NS2 that are required for inhibiting the IFN pathway. Our study has yielded strong evidence for the FPV mechanisms that counteract the host innate immunity.


Subject(s)
Feline Panleukopenia Virus/immunology , Host-Pathogen Interactions , Immune Evasion , Interferon-beta/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Animals , Cats , Virulence Factors/metabolism
18.
Vet Microbiol ; 192: 110-117, 2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27527772

ABSTRACT

Feline calicivirus (FCV) is a virus that causes respiratory disease in cats. In this study, the FCV TIG-1 was isolated from Siberian tiger feces collected in 2014 in Heilongjiang Province, China. Phylogenetic analysis among TIG-1 and other FCVs showed that TIG-1 does not share the same lineage with other FCV isolates from Heilongjiang or other regions in China but is located in the same cluster with the FCV strain Urbana, which was isolated from the United States. The growth kinetics in vitro and the pathogenicity in cats between TIG-1 and the domestic cat-origin FCV strain F9 (vaccine strain) and strain 2280 were compared. We found that the growth kinetics of strains TIG-1 and 2280 were faster than that of strain F9 from 12h to 36h post-infection, indicating that strains TIG-1 and 2280 produce infectious virions and reach peak yields earlier. Challenge experiments in cats showed that TIG-1 grew faster than the other two strains in the lungs of cats and that TIG-1 is a virulent FCV with 100% morbidity and lethality. In addition, the histopathological results showed that the virulent TIG-1 strain directly led to severe lung tissue damage and indirectly led to intestinal damage. The results presented here show that a tiger-origin FCV exhibits high virulence in cats.


Subject(s)
Caliciviridae Infections/veterinary , Calicivirus, Feline/pathogenicity , Cat Diseases/virology , Tigers/virology , Animals , Caliciviridae Infections/pathology , Caliciviridae Infections/virology , Calicivirus, Feline/genetics , Calicivirus, Feline/isolation & purification , Cats , Phylogeny , Virulence , Virus Shedding
19.
Sci Rep ; 6: 20857, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26878800

ABSTRACT

In 2010, a new rabbit hemorrhagic disease virus (RHDV) variant, designated RHDV2, was identified for the first time in Italy. Studies have shown that RHDV2 differs from RHDV1 (traditional RHDV) in terms of its antigenic profile and genetic characteristics. The VP60 protein of RHDV is a structural protein that plays important roles in viral replication, assembly, and immunogenicity. In this study, we immunized BALB/c mice with recombinant VP60 proteins from different RHDV subtypes. After three rounds of subcloning, type-specific positive hybridoma clones of RHDV1 and RHDV2 were further identified by an enzyme-linked immunosorbent assay, Western blotting, and an indirect immunofluorescence assay. Finally, three monoclonal antibodies (MAbs) (1D6, 1H2, and 3F2) that only recognize RHDV1, and four MAbs (1G2, 2C1, 3B7, and 5D6) that only recognize RHDV2 were identified. The epitopes recognized by these MAbs were mapped by Western blotting. Sequence analysis showed that the epitope sequences recognized by 1D6, 1H2, and 3F2 are highly conserved (98%) among RHDV1 strains, whereas the epitope sequences recognized by 1G2, 2C1, 3B7, and 5D6 are 100% conserved among RHDV2 strains. The high conservation of the epitope sequence showed that the screened MAbs were type-specific, and that they could distinguish different RHDV subtypes.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Epitope Mapping , Epitopes, B-Lymphocyte/immunology , Hemorrhagic Disease Virus, Rabbit/immunology , Amino Acid Sequence , Animals , Antibody Specificity/immunology , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Female , Gene Expression , Hemorrhagic Disease Virus, Rabbit/genetics , Hybridomas/immunology , Mice , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology
20.
Immunol Res ; 64(1): 82-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26275577

ABSTRACT

The mitochondrial anti-viral signaling protein (MAVS) plays an important role in the type I IFN response. In this study, two feline MAVS transcripts were cloned. Both transcripts have the same open reading frame encoding 523 amino acids. The putative protein shares 76.6 % similarity with canine and exhibits similarity to human, mouse, rat, bovine and porcine, ranging from 46.1 to 65.8 %. Deletion mutant analysis indicated that the transmembrane (TM) domain is necessary for localization in the mitochondrial membrane, and both the caspase activation and recruitment domain and TM domain are indispensible for activating the IFN-ß response. Additionally, Sendai virus-induced IFN-ß promoter activation was significantly inhibited by siRNA targeting MAVS. Finally, miniMAVS, a second protein encoded by MAVS mRNA, was identified, which interfered with the IFN-ß response via the inhibition of NF-κB activation. The identification of MAVS will promote the understanding and control of feline infectious diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cat Diseases/immunology , Cats/immunology , Respirovirus Infections/immunology , Sendai virus/immunology , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Cattle , Cloning, Molecular , Dogs , Humans , Interferon-beta/metabolism , Mice , Molecular Sequence Data , Protein Structure, Tertiary/genetics , RNA, Small Interfering/genetics , Rats , Respirovirus Infections/veterinary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...