Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Diabetes Res Clin Pract ; : 111728, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838943

ABSTRACT

AIMS: This study aimed to investigate the association between serum levels of common and uncommon unsaturated fatty acids and prediabetes risk. METHODS: Data were collected from the National Health and Nutrition Examination Survey for 2003-2004 and 2011-2012. Weighted proportional and multivariate logistic regression analyses were performed to assess the association of serum PUFAs and MUFAs with prediabetes risk after adjusting for potential confounders. RESULTS: A total of 3575 individuals were enrolled in this study. Serum levels of PUFAs EPA (20:5 n3) and GLA (18:3 n6) were associated with increased prediabetes risk (EPA (20:5 n3): OR = 1.878, 95% CI: 1.177-2.996, Ptrend = 0.002; GLA (18:3 n6): 1.702, 95% CI: 1.140-2.541, Ptrend = 0.016). The MUFAs PA (16:1 n7) and EA (20:1 n9) increased the risk of prediabetes (OR in quintile5: PA (16:1 n7): 1.780, 95% CI: 1.056-3.001, Ptrend = 0.003; EA (20:1 n9): 0.587, 95% CI: 0.347-0.994, Ptrend = 0.010). Moreover, nonlinear analysis revealed that serum levels of EPA (20:5 n3) and EA (20:1 n-9) were nonlinearly associated with prediabetes risk. CONCLUSION: Some serum n-3 PUFAs are positively associated with prediabetes, several serum n-6 PUFAs are inversely associated with prediabetes. Regulating individual serum USFA levels may help prevent prediabetes, thereby providing evidence for clinical and nutritional practices.

2.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840092

ABSTRACT

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Subject(s)
Anesthetics, Inhalation , Animals, Newborn , Isoflurane , K Cl- Cotransporters , Solute Carrier Family 12, Member 2 , Symporters , Animals , Isoflurane/pharmacology , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Rats , Mice , Rats, Sprague-Dawley , Male , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Female , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism
3.
Ren Fail ; 46(2): 2359638, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832484

ABSTRACT

Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.


Subject(s)
Computational Biology , Diabetic Nephropathies , Membrane Proteins , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Humans , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cell Line , Palmitic Acid/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Male , Mice, Inbred C57BL , Up-Regulation , Biomarkers/metabolism
4.
Front Oncol ; 14: 1357248, 2024.
Article in English | MEDLINE | ID: mdl-38694786

ABSTRACT

Background: Lung cancer is one of the most dangerous cancers in the world. Most lung cancer patients are diagnosed in the middle and later stages, which can lead to poor survival rates. The development of lung cancer is often accompanied by abnormal expression of exosomal non-coding RNAs, which means that they have the potential to serve as noninvasive novel molecular markers for lung cancer diagnosis. Methods: For this study, we conducted a comprehensive literature search in PubMed, Web of science, Science direct, Embase, Cochrane, and Medline databases, and by reviewing published literature, The diagnostic capacity of exosomal microRNAs (miRNAs), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) for lung cancer was evaluated. Functional enrichment analysis of miRNA target genes was performed. Results: The study included 41 papers, a total of 68 studies. More than 60 miRNAs, 9 lncRNAs and 14 circRNAs were involved. The combined sensitivity and specificity were 0.83(95%CI, 0.80~0.86) and 0.83(95% CI,0.79~0.87); 0.71(95% CI,0.68~0.74) and 0.79(95%CI, 0.75~0.82); 0.79(95%CI,0.67~0.87) and 0.81(95%CI,0.74~0.86), and constructed overall subject operating characteristic curves with the summarized area under the curve values of 0.90, 0.82, and 0.86. Conclusion: Our study shows that exosomes miRNAs, lncRNAs and circRNAs are effective in the diagnosis of lung cancer, providing evidence for studies related to novel lung cancer diagnostic markers. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023457087.

5.
Article in English | MEDLINE | ID: mdl-38706356

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD), a key contributor to degenerative spinal diseases such as cervical spondylosis, significantly influences the quality of life of patients. Tuina, historically employed in the clinical management of cervical spondylosis, has demonstrated positive therapeutic outcomes; however, the mechanism of Tuina remains unclear. OBJECTIVE: This study examined the efficacy of Tuina in correcting the imbalanced structure of the cervical spine and its impact on apoptotic chondrocytes within the cervical disc. The underlying mechanisms were explored using a rabbit model of IVDD induced by dynamic and static imbalances. METHODS: The IVDD rabbit model was established by restraining the head in a downward position for 12 weeks (Model group). In the Tuina1 group, treatment was performed on the posterior cervical trapezius muscle daily for 2 weeks, whereas in the Tuina2 group, treatment was performed on both the posterior cervical trapezius and anterior sternocleidomastoid muscles daily for 2 weeks. After treatment, X-ray, micro-computed tomography (CT), histological staining, qRT-PCR, and western blotting were used to evaluate the mechanism by which Tuina inhibits chondrocyte apoptosis. RESULTS: The results demonstrated that Tuina treatment inhibited chondrocyte apoptosis in cervical discs by adjusting the neck structure balance, and a more significant therapeutic effect was observed in the Tuina2 group. Lateral cervical spine X-ray and CT scans in rabbits revealed notable improvements in cervical spine curvature and vertebral structure in the treatment groups compared with those in the Model group. Hematoxylin and eosin staining and TUNEL staining further confirmed the positive impact of Tuina treatment on intervertebral disc tissue morphology and chondrocyte apoptosis. Additionally, western blotting and immunohistochemical analysis showed that Tuina treatment suppressed chondrocyte apoptosis by downregulating Bax and caspase-3 while upregulating Bcl-2. Western blotting results further indicated that Tuina could activate the FAK/PI3K/Akt signaling pathway by mediating integrin-ß1. CONCLUSION: Tuina treatment inhibited chondrocyte apoptosis in cervical discs by activating the FAK/PI3K/Akt signaling pathway, providing convincing evidence to support Tuina treatment as a promising method for IVDD.

6.
Front Microbiol ; 15: 1401436, 2024.
Article in English | MEDLINE | ID: mdl-38751721

ABSTRACT

Broad bean paste is a popular condiment in Asian countries. Leaves of Vitex negundo Linn. were used extensively in China during the koji-making of broad bean paste. Spreading V. negundo leaves on raw broad beans during fermentation was able to facilitate the rapid growth of fungi to form mature koji. We isolated two strains of fungi from mature koji, and four strains of bacteria from the rotten broad beans resulting from a failed attempt. According to microbial activity assays, two polymethoxylated flavones, 5-hydroxy-3,6,7,8,3',4'-hexamethoxy flavone (HJ-1) and 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxy flavone (HJ-2) were isolated from V. negundo leaves, and the fungal growth promotion and inhibition of bacterial growth of these two compounds were found to improve the production of broad bean koji. This study reveals the compounds present in V. negundo leaves with bioactivity against important microbes in koji manufacture, and provides a theoretical basis for the application of V. negundo in broad bean paste production.

7.
Med Phys ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753987

ABSTRACT

BACKGROUND: Currently, an advanced imaging method may be necessary for magnetic resonance imaging (MRI) to diagnosis and quantify liver fibrosis (LF). PURPOSE: To evaluate the feasibility of the multicompartmental restriction spectrum imaging (RSI) model to characterize LF in a mouse model. METHODS: Thirty mice with carbon tetrachloride (CCl4)-induced LF and eight control mice were investigated using multi-b-value (ranging from 0 to 2000 s/mm2) diffusion-weighted imaging (DWI) on a 3T scanner. DWI data were processed using RSI model (2-5 compartments) with the Bayesian Information Criterion (BIC) determining the optimal model. Conventional ADC value and signal fraction of each compartment in the optimal RSI model were compared across groups. Receiver operating characteristics (ROC) curve analysis was performed to determine the diagnosis performances of different parameters, while Spearman correlation analysis was employed to investigate the correlation between different tissue compartments and the stage of LF. RESULTS: According to BIC results, a 4-compartment RSI model (RSI4) with optimal ADCs of 0.471 × 10-3, 1.653 × 10-3, 9.487 × 10-3, and > 30 × 10-3, was the optimal model to characterize LF. Significant differences in signal contribution fraction of the C1 and C3 compartments were observed between LF and control groups (P = 0.018 and 0.003, respectively). ROC analysis showed that RSI4-C3 was the most effective single diffusion parameter for characterizing LF (AUC = 0.876, P = 0.003). Furthermore, the combination of ADC values and RSI4-C3 value increased the diagnosis performance significantly (AUC = 0.894, P = 0.002). CONCLUSION: The 4-compartment RSI model has the potential to distinguish LF from the control group based on diffusion parameters. RSI4-C3 showed the highest diagnostic performance among all the parameters. The combination of ADC and RSI4-C3 values further improved the discrimination performance.

9.
Light Sci Appl ; 13(1): 113, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744817

ABSTRACT

Using photodynamic therapy (PDT) to treat deep-seated cancers is limited due to inefficient delivery of photosensitizers and low tissue penetration of light. Polymeric nanocarriers are widely used for photosensitizer delivery, while the self-quenching of the encapsulated photosensitizers would impair the PDT efficacy. Furthermore, the generated short-lived reactive oxygen spieces (ROS) can hardly diffuse out of nanocarriers, resulting in low PDT efficacy. Therefore, a smart nanocarrier system which can be degraded by light, followed by photosensitizer activation can potentially overcome these limitations and enhance the PDT efficacy. A light-sensitive polymer nanocarrier encapsulating photosensitizer (RB-M) was synthesized. An implantable wireless dual wavelength microLED device which delivers the two light wavelengths sequentially was developed to programmatically control the release and activation of the loaded photosensitizer. Two transmitter coils with matching resonant frequencies allow activation of the connected LEDs to emit different wavelengths independently. Optimal irradiation time, dose, and RB-M concentration were determined using an agent-based digital simulation method. In vitro and in vivo validation experiments in an orthotopic rat liver hepatocellular carcinoma disease model confirmed that the nanocarrier rupture and sequential low dose light irradiation strategy resulted in successful PDT at reduced photosensitizer and irradiation dose, which is a clinically significant event that enhances treatment safety.

10.
JAMA Netw Open ; 7(5): e2412687, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38776081

ABSTRACT

Importance: Large language models (LLMs) may facilitate the labor-intensive process of systematic reviews. However, the exact methods and reliability remain uncertain. Objective: To explore the feasibility and reliability of using LLMs to assess risk of bias (ROB) in randomized clinical trials (RCTs). Design, Setting, and Participants: A survey study was conducted between August 10, 2023, and October 30, 2023. Thirty RCTs were selected from published systematic reviews. Main Outcomes and Measures: A structured prompt was developed to guide ChatGPT (LLM 1) and Claude (LLM 2) in assessing the ROB in these RCTs using a modified version of the Cochrane ROB tool developed by the CLARITY group at McMaster University. Each RCT was assessed twice by both models, and the results were documented. The results were compared with an assessment by 3 experts, which was considered a criterion standard. Correct assessment rates, sensitivity, specificity, and F1 scores were calculated to reflect accuracy, both overall and for each domain of the Cochrane ROB tool; consistent assessment rates and Cohen κ were calculated to gauge consistency; and assessment time was calculated to measure efficiency. Performance between the 2 models was compared using risk differences. Results: Both models demonstrated high correct assessment rates. LLM 1 reached a mean correct assessment rate of 84.5% (95% CI, 81.5%-87.3%), and LLM 2 reached a significantly higher rate of 89.5% (95% CI, 87.0%-91.8%). The risk difference between the 2 models was 0.05 (95% CI, 0.01-0.09). In most domains, domain-specific correct rates were around 80% to 90%; however, sensitivity below 0.80 was observed in domains 1 (random sequence generation), 2 (allocation concealment), and 6 (other concerns). Domains 4 (missing outcome data), 5 (selective outcome reporting), and 6 had F1 scores below 0.50. The consistent rates between the 2 assessments were 84.0% for LLM 1 and 87.3% for LLM 2. LLM 1's κ exceeded 0.80 in 7 and LLM 2's in 8 domains. The mean (SD) time needed for assessment was 77 (16) seconds for LLM 1 and 53 (12) seconds for LLM 2. Conclusions: In this survey study of applying LLMs for ROB assessment, LLM 1 and LLM 2 demonstrated substantial accuracy and consistency in evaluating RCTs, suggesting their potential as supportive tools in systematic review processes.


Subject(s)
Bias , Randomized Controlled Trials as Topic , Humans , Reproducibility of Results , Language , Risk Assessment/methods
11.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786824

ABSTRACT

Two-dimensional (2D) van der Waals layered materials have been explored in depth. They can be vertically stacked into a 2D heterostructure and represent a fundamental way to explore new physical properties and fabricate high-performance nanodevices. However, the controllable and scaled growth of non-layered quasi-2D materials and their heterostructures is still a great challenge. Here, we report a selective two-step growth method for high-quality single crystalline CrTe/WSe2 and CrTe/MoS2 heterostructures by adopting a universal CVD strategy with the assistance of molten salt and mass control. Quasi-2D metallic CrTe was grown on pre-deposited 2D transition metal dichalcogenides (TMDC) under relatively low temperatures. A 2D CrTe/TMDC heterostructure was established to explore the interface's structure using scanning transmission electron microscopy (STEM), and also demonstrate ferromagnetism in a metal-semiconductor CrTe/TMDC heterostructure.

12.
Environ Pollut ; 355: 124102, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38710362

ABSTRACT

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.

13.
Int J Biol Macromol ; 271(Pt 2): 132548, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782323

ABSTRACT

A new approach of fabricating α-linolenic acid emulsions with enhanced oxidative stability in vitro digestion was established, using covalent octenyl succinic anhydride starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes as emulsifiers. The physicochemical characteristics and surface morphology of emulsions were mainly characterized by rheological measurements, laser scanning microscope (CLSM) and cryo-scanning electron microscopy (Cryo-SEM). Results indicated that emulsions had dense interfacial layers and strong network structures. As a result, the stability and antioxidant ability of emulsions were improved significantly. In addition, the oxidative stability of emulsions in vitro gastrointestinal digestion was explored. Results showed that emulsions could maintain better oxidative stability owing to antioxidant activity of covalent OSAS-SP-EGCG complexes under gastrointestinal conditions. In particular, lipid hydroperoxide and malondialdehyde contents of emulsions prepared by 1:4 complexes were lower than 0.35 mmol/L and 20.5 nmol/mL, respectively, approximately half those of emulsions stabilized by OSAS (0.65 mmol/L and 39.5 nmol/mL). It was indicated that covalent OSAS-SP-EGCG complexes could effectively inhibit α-linolenic acid oxidation in emulsions during vitro gastrointestinal digestion. This work will provide a theoretical basis for the development of α-linolenic acid emulsions, which will help to broaden application of α-linolenic acid in food industry.

14.
Nat Commun ; 15(1): 4415, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789444

ABSTRACT

Organic room-temperature phosphorescence materials have attracted extensive attention, but their development is limited by the stability and processibility. Herein, based on the on-line derivatization strategy, we report the urea-formaldehyde room-temperature phosphorescence materials which are constructed by polycondensation of aromatic diamines with urea and formaldehyde. Excitingly, urea-formaldehyde room-temperature phosphorescence materials achieve phosphor lifetime up to 3326 ms. There may be two ways to enhance phosphorescence performance, one is that the polycondensation of aromatic diamine with urea and formaldehyde promotes spin-orbit coupling, and another is that the imidazole derivatives derived from the condensation of aromatic o-diamine with formaldehyde maintains low levels of energy level difference and spin-orbit coupling, thus achieving ultra-long afterglow. Surprisingly, urea-formaldehyde room-temperature phosphorescence materials exhibit tunable phosphorescence emission in electrostatic field. Accordingly, 1,4-phenylenediamine, urea, and formaldehyde are copolymerized and self-assembled into phosphorescence microspheres with different electrostatic potential strengths. By mixing 1 wt% 1,4-phenylenediamine polycondensation microspheres with 1,4-phenylenediamine free microspheres, phosphor lifetime of the composite could be regulated from 27 ms to 123 ms. Moreover, vulcanization process enables precise shaping of urea-formaldehyde room-temperature phosphorescence materials. This work not only demonstrates that urea-formaldehyde room-temperature phosphorescence materials are promising candidates for organic phosphors, but also exhibits the phenomenon of electrostatically regulated phosphorescence.

15.
Chem Soc Rev ; 53(11): 5862-5903, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38716589

ABSTRACT

Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.


Subject(s)
Immunomodulation , Nanoparticles , Neoplasms , Tumor Microenvironment , Humans , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Tumor Microenvironment/drug effects , Immunomodulation/drug effects , Animals
17.
J Magn Reson Imaging ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722216

ABSTRACT

BACKGROUND: Analysis of left atrial (LA) strain and left atrioventricular coupling index (LACI) have prognostic value in cardiovascular diseases. However, the prognostic value of LA strain and LACI in patients with suspected myocarditis and preserved left ventricular ejection fraction (LVEF) is unclear. PURPOSE: To investigate the prognostic value of LA strain and LACI in patients with suspected myocarditis and preserved LVEF in comparison with conventional MRI outcome predictors. STUDY TYPE: Retrospective. POPULATION: One hundred sixty-five patients with clinically suspected myocarditis and preserved LVEF with available follow-up data. FIELD STRENGTH/SEQUENCE: Steady-state free precession cine and phase-sensitive inversion recovery segmented gradient echo late gadolinium enhancement sequences at 3.0 T. ASSESSMENT: Left ventricular (LV) and LA strain were evaluated using feature tracking. LACI was calculated as the ratio of LA and LV volumes at LV end-diastole. Patients were followed-up with the primary endpoint being major adverse cardiovascular events (MACE). STATISTICAL TESTS: Independent-samples t-test and Mann-Whitney U test to compare patients with and without MACE, receiver operating characteristic (ROC) curve analysis to define high/low risk groups, Kaplan-Meier survival analysis and Cox proportional hazards regression to assess prognosis. A P value of <0.05 was considered statistically significant. RESULTS: The associations of LV strain parameters (including global radial, circumferential, and longitudinal strain) and LACI with MACE were not significant (P = 0.511, 0.108, 0.148, and 0.847, respectively). An optimal LA conduit strain (Ԑe) cutoff value of 10.4% was identified to best classify patients into low- and high-risk groups. Only Ԑe was significantly associated with MACE in both univariable (hazards ratio [HR] 0.936, 95% confidence interval [CI] 0.884-0.991) and multivariable Cox survival analyses (HR 0.937, 95% CI 0.884-0.994). DATA CONCLUSION: LA conduit strain has prognostic value in patients with suspected myocarditis and preserved LVEF, incremental to conventional MRI outcome predictors, whereas LACI was not associated with MACE occurrence. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

18.
J Mol Neurosci ; 74(2): 39, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581598

ABSTRACT

Previous studies have indicated a potential relationship between zinc and epilepsy. The aim of this study is to investigate the causal relationship between zinc, zinc-dependent carbonic anhydrase, and gray matter volume in brain regions enriched with zinc and epilepsy, as well as explore the possible mechanisms by which zinc contributes to epilepsy. First, this study assessed the risk causality between zinc, carbonic anhydrase, and gray matter volume alterations in zinc-enriched brain regions and various subtypes of epilepsy based on Two-sample Mendelian randomization analysis. And then, this study conducted GO/KEGG analysis based on colocalization analysis, MAGMA analysis, lasso regression, random forest model, and XGBoost model. The results of Mendelian randomization analyses showed a causal relationship between zinc, carbonic anhydrase-4, and generalized epilepsy (p = 0.044 , p = 0.010). Additionally, carbonic anhydrase-1 and gray matter volume of the caudate nucleus were found to be associated with epilepsy and focal epilepsy (p = 0.014, p = 0.003 and p = 0.022, p = 0.009). A colocalization relationship was found between epilepsy and focal epilepsy (PP.H4.abf = 97.7e - 2). Meanwhile, the MAGMA analysis indicated that SNPs associated with epilepsy and focal epilepsy were functionally localized to zinc-finger-protein-related genes (p < 1.0e - 5). The genes associated with focal epilepsy were found to have a molecular function of zinc ion binding (FDR = 2.3e - 6). After the onset of epilepsy, the function of the gene whose expression changed in the rats with focal epilepsy was enriched in the biological process of vascular response (FDR = 4.0e - 5). These results revealed mechanism of the increased risk of epilepsy caused by elevated zinc may be related to the increase of zinc ion-dependent carbonic anhydrase or the increase of the volume of zinc-rich caudate gray matter.


Subject(s)
Carbonic Anhydrases , Epilepsies, Partial , Epilepsy , Rats , Animals , Zinc/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/analysis , Carbonic Anhydrases/metabolism , Brain/metabolism , Epilepsy/genetics
19.
Orthod Craniofac Res ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651920

ABSTRACT

OBJECTIVE: This study aimed to investigate the biomechanical effects of clear aligner (CA) with different shape designs at extraction space (CAES) area during space closing. MATERIALS AND METHODS: A finite-element method (FEM) model of mandibular dentition, periodontal ligaments, attachments, and corresponding CA was established. The connecting rod design of CAES was modelled for the control group. Eight test groups with different heights of CAES from -4 mm to +4 mm were designed. Tooth displacement tendencies were calculated. The maximum principal stress in PDLs, teeth, and CAs was analysed. Both global coordinate system and local coordinate system were also used to evaluate individual tooth movements. RESULTS: Across all groups, stresses concentrated on the lingual outer surface of CAESs. For the lowered CAES groups, both the stress value and the stress distribution area at CAESs were increased. The lowered CAES groups showed reduced movement in anterior teeth and less tipping tendency of the canines. CONCLUSION: The shape of CAES has a biomechanical impact on anterior teeth movement and should be considered in aligner design. The results suggest that increasing the height of CAES can enhance anterior teeth retraction, while lowered CAES may facilitate controlled root movement. Changes in the shape of CAES represent a potential direction for biomechanical improvement of clear aligner in extraction cases and are worth exploring.

20.
Small ; : e2400954, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38676336

ABSTRACT

In the progression of X-ray-based radiotherapy for the treatment of cancer, the incorporation of nanoparticles (NPs) has a transformative impact. This study investigates the potential of NPs, particularly those comprised of high atomic number elements, as radiosensitizers. This aims to optimize localized radiation doses within tumors, thereby maximizing therapeutic efficacy while preserving surrounding tissues. The multifaceted applications of NPs in radiotherapy encompass collaborative interactions with chemotherapeutic, immunotherapeutic, and targeted pharmaceuticals, along with contributions to photodynamic/photothermal therapy, imaging enhancement, and the integration of artificial intelligence technology. Despite promising preclinical outcomes, the paper acknowledges challenges in the clinical translation of these findings. The conclusion maintains an optimistic stance, emphasizing ongoing trials and technological advancements that bolster personalized treatment approaches. The paper advocates for continuous research and clinical validation, envisioning the integration of NPs as a revolutionary paradigm in cancer therapy, ultimately enhancing patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...