Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
Cancer Innov ; 3(4): e123, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948252

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is in urgent need of a second-line or later-line treatment strategy. We aimed to analyze the efficacy and safety of additional anlotinib, specifically anlotinib in combination with immunotherapy, in patients with PDAC who have failed first-line therapy. Methods: Patients with pathological diagnosis of PDAC were additionally treated with anlotinib, and some patients were treated with anti-PD-1 agents at the same time, which could be retrospectively analyzed. The efficacy and safety of additional anlotinib were evaluated. Results: A total of 23 patients were included. In patients treated with additional anlotinib, the overall median progression-free survival (PFS) was 1.8 months and the median overall survival (OS) was 6.3 months, regardless of anti-PD-1 agents. Among patients receiving additional anlotinib in combination with anti-PD-1 agents, median PFS and OS were 1.8 and 6.5 months, respectively. Adverse events (AEs) were observed in 16 patients (69.6%). In patients treated with additional anlotinib, the majority of AEs were grade 1-3. Univariate analysis revealed that patients with baseline red blood cell distribution width (RDW) <14% treated with additional anlotinib plus anti-PD-1 agents had significantly longer OS than patients with baseline RDW ≥14% (p = 0.025). Patients with additional anlotinib plus anti-PD-1 agents as second-line therapy had a longer OS than those treated as later-line therapy (p = 0.012). Multivariate analysis showed that baseline RDW was the only independent risk factor for OS (p = 0.042). Conclusion: The combination of anlotinib and immunotherapy represents an effective add-on therapy with tolerable AEs as second- or later-line therapy in patients with PDAC, particularly in patients with baseline RDW <14%.

2.
J Control Release ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986911

ABSTRACT

Diabetic foot ulcer (DFU), which is characterised by damage to minute blood vessels or capillaries around wounds, is one of the most serious and dreaded complications of diabetes. It is challenging to repair chronic non-healing DFU wounds. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and promotes wound healing in DFU. However, it is difficult to sustainably deliver VEGF to the wound site owing to its poor stability and easy degradation. To overcome this challenge, lipid nanoparticles (LNP) encapsulating circular RNA (circRNA) encoding VEGF-A have been developed to continuously generate and release VEGF-A and accelerate diabetic wound healing. First, VEGF-A circRNA was synthesized using group I intron autocatalysis strategy and confirmed by enzyme digestion, polymerase chain reaction, and sequencing assay. VEGF-A circRNA was encapsulated in ionizable lipid U-105-derived LNP (U-LNP) using microfluidic technology to fabricate U-LNP/VEGF-A circRNA. For comparison, a commercially ionizable lipid ALC-0315-derived LNP (A-LNP) encapsulating circRNA (A-LNP/circRNA) was used. Dynamic light scattering and transmission electron microscopy characterization indicated that U-LNP/circRNA had spherical structure with an average diameter of 108.5 nm, a polydispersity index of 0.22, and a zeta potential of -3.31 mV. The messenger RNA (mRNA) encapsulation efficiency (EE%) of U-LNP was 87.12%. In vitro transfection data confirmed better stability and long-term VEGF-A expression of circRNA compared with linear mRNA. Assessment of cytotoxicity and innate immunity further revealed that U-LNP/circRNA was biocompatible and induced a weak congenital immune response. Cell scratch and angiogenesis tests demonstrated the bioactivity of U-LNP/VEGF-A circRNA owing to its VEGF-A expression. In situ bioluminescence imaging of firefly luciferase (F-Luc) probe and ELISA demonstrated that circRNA had long-term and strong expression of VEGF-A in the first week, and a gradual decrease in the next week at the wound site and surrounding areas. Finally, a diabetic mouse model was used to validate the healing effect of U-LNP/VEGF-A circRNA formulation. The results showed that a single dose of U-LNP/VEGF-A circRNA administered by dripping resulted in almost complete wound recovery on day 12, which was significantly superior to that of U-LNP/VEGF-A linear mRNA, and it also outperformed recombinant human vascular endothelial growth factor (rhVEGF) injection and A-LNP/circRNA dripping. Histological analysis confirmed the healing efficiency and low toxicity of U-LNP/VEGF-A circRNA formulation. Together, VEGF-A circRNA delivered by U-105-derived LNP showed good performance in wound healing, which was ascribed to the long-term expression and continuous release of VEGF-A, and has potential applications for the treatment of diabetic foot ulcer wounds.

3.
Eur J Med Chem ; 276: 116634, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38972077

ABSTRACT

HDAC11, as a rising star in the histone deacetylase (HDAC) family, has attracted widespread interest in the biomedical field in recent years specially owing to its high defatty-acylase activity compared its innate deacetylase activity. Numerous studies have provided evidence indicating the crucial involvement of HDAC11 in cancers, immune responses, and metabolic processes. Several potent and selective HDAC11 inhibitors have been discovered and identified, which is crucial for exploring the function of HDAC11 and its potential therapeutic applications. Herein, we present a critical overview of the current advances in the biological function of HDAC11 and its inhibitors. We initially discuss the physiological functions of HDAC11 and its pathological roles in relevant diseases. Subsequently, our main focus centers on the design strategy and development process of HDAC11 inhibitors. Additionally, we address significant challenges and outline future directions in this field. This perspective may provide guidance for the further development of HDAC11 inhibitors and their prospects in disease treatment.

4.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992067

ABSTRACT

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Subject(s)
Bortezomib , Cell Cycle Proteins , Mitosis , Proteasome Endopeptidase Complex , Protein-Tyrosine Kinases , Pyroptosis , Pyroptosis/drug effects , Humans , Mice , Animals , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Mitosis/drug effects , Mitosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Bortezomib/pharmacology , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Proteasome Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Xenograft Model Antitumor Assays , Gasdermins , Pyrimidinones
6.
Front Aging Neurosci ; 16: 1400544, 2024.
Article in English | MEDLINE | ID: mdl-38808033

ABSTRACT

As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that ß-amyloid protein (Aß) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aß protein antibodies is not satisfactory, suggesting that Aß amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aß (AßO) in 1998, scientists began to focus on the neurotoxicity of AßOs. As an endogenous neurotoxin, the active growth of AßOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AßOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AßO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AßOs and elucidates how AßOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.

7.
ACS Med Chem Lett ; 15(5): 722-730, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38746878

ABSTRACT

Colony stimulating factor-1 receptor (CSF1R or c-FMS), a class III receptor tyrosine kinase expressed on members of the mononuclear phagocyte system (MPS), plays a key role in the proper functioning of macrophages, microglia, and related cells. Aberrant signaling through CSF1R has been associated with a variety of disease states, including cancer, inflammation, and neurodegeneration. In this Letter, we detail our efforts to develop novel CSF1R inhibitors. Drawing on previously described compounds, including GW2580 (4), we have discovered a novel series of compounds based on the imidazo[4,5-b]pyridine scaffold. Initial structure-activity relationship studies culminated in the identification of 36, a lead compound with potent CSF1R biochemical and cellular activity, acceptable in vitro ADME properties, and oral exposure in rat.

8.
IEEE Trans Med Imaging ; PP2024 May 13.
Article in English | MEDLINE | ID: mdl-38739507

ABSTRACT

Accurate T-staging of nasopharyngeal carcinoma (NPC) holds paramount importance in guiding treatment decisions and prognosticating outcomes for distinct risk groups. Regrettably, the landscape of deep learning-based techniques for T-staging in NPC remains sparse, and existing methodologies often exhibit suboptimal performance due to their neglect of crucial domain-specific knowledge pertinent to primary tumor diagnosis. To address these issues, we propose a new cross-domain mutual-assistance learning framework for fully automated diagnosis of primary tumor using H&N MR images. Specifically, we tackle primary tumor diagnosis task with the convolutional neural network consisting of a 3D cross-domain knowledge perception network (CKP net) for excavated cross-domain-invariant features emphasizing tumor intensity variations and internal tumor heterogeneity, and a multi-domain mutual-information sharing fusion network (M2SF net), comprising a dual-pathway domain-specific representation module and a mutual information fusion module, for intelligently gauging and amalgamating multi-domain, multi-scale T-stage diagnosis-oriented features. The proposed 3D cross-domain mutual-assistance learning framework not only embraces task-specific multi-domain diagnostic knowledge but also automates the entire process of primary tumor diagnosis. We evaluate our model on an internal and an external MR images dataset in a three-fold cross-validation paradigm. Exhaustive experimental results demonstrate that our method outperforms the state-of-the-art algorithms, and obtains promising performance for tumor segmentation and T-staging. These findings underscore its potential for clinical application, offering valuable assistance to clinicians in treatment decision-making and prognostication for various risk groups.

9.
Aging Ment Health ; : 1-9, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695396

ABSTRACT

OBJECTIVES: A large gap exists in the development of culturally sensitive interventions to reduce stress related to dementia care among Chinese Americans, one of the fastest growing minority populations in the United States. We developed and pilot tested the feasibility and preliminary efficacy of a peer mentoring program for Chinese American dementia caregivers. METHOD: A pilot randomized controlled trial was conducted among 38 Chinese American caregivers in New York City. Four outcome variables-caregiving competence, loneliness, caregiver burden, and depressive symptoms-were measured at baseline and 3-month and 9-month follow-ups. The study protocol and preliminary results are available at clinicltrial.gov [NCT04346745]. RESULTS: The feasibility of the intervention was high, as indicated by an acceptable retention rate, fidelity, and positive feedback from caregivers and mentors. Compared with the control group, the intervention group had greater reductions in scores for loneliness at 3-month follow-up and for caregiver burden and depressive symptoms at 9-month follow-up. We did not find significant differences in caregiving competence between the two groups. CONCLUSION: The results indicated the high feasibility and potential efficacy of empowering existing human resources of experienced caregivers in the same ethnic community to improve the mental health of Chinese caregivers. Further research is needed to test the efficacy in a larger sample of this population.

10.
J Agric Food Chem ; 72(17): 9669-9679, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38632108

ABSTRACT

Soil-borne diseases represent an impediment to the sustainable development of agriculture. A soil-borne disease caused by Ilyonectria destructans severely impacts Panax species, and soil disinfestation has proven to be an effective management approach. Here, diallyl trisulfide (DATS), derived from garlic, exhibited pronounced inhibitory effects on the growth of I. destructans in vitro tests and contributed to the alleviation of soil-borne diseases in the field. A comprehensive analysis demonstrated that DATS inhibits the growth of I. destructans by activating detoxifying enzymes, such as GSTs, disrupting the equilibrium of redox reactions. A series of antioxidant amino acids were suppressed by DATS. Particularly noteworthy is the substantial depletion of glutathione by DATS, resulting in the accumulation of ROS, ultimately culminating in the inhibition of I. destructans growth. Briefly, DATS could effectively suppress soil-borne diseases by inhibiting pathogen growth through the activation of ROS, and it holds promise as a potential environmentally friendly soil disinfestation.


Subject(s)
Allyl Compounds , Plant Diseases , Reactive Oxygen Species , Sulfides , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Sulfides/pharmacology , Sulfides/metabolism , Sulfides/chemistry , Reactive Oxygen Species/metabolism , Plant Diseases/prevention & control , Plant Diseases/microbiology , Ascomycota/drug effects , Ascomycota/growth & development , Ascomycota/metabolism , Garlic/chemistry , Garlic/growth & development , Soil/chemistry , Soil Microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
11.
Diabetes Metab Syndr Obes ; 17: 1597-1609, 2024.
Article in English | MEDLINE | ID: mdl-38616994

ABSTRACT

Metabolic syndrome (MS) is a multifaceted pathological condition characterized by the atypical accumulation of various metabolic components such as central obesity or excess weight, hyperlipidemia, low-density lipoprotein (LDL), hypertension, and insulin resistance. Recently, MS has been recognized as a notable contributor to heart and circulatory diseases. In addition, with increasing research, the impact of MS on tendon repair and disease has gradually emerged. Recent studies have investigated the relationship between tendon healing and diseases such as diabetes, dyslipidemia, obesity, and other metabolic disorders. However, diabetes mellitus (DM), hypercholesterolemia, obesity, and various metabolic disorders often coexist and together constitute MS. At present, insulin resistance is considered the major pathological mechanism underlying MS, central obesity is regarded as the predominant factor responsible for it, and dyslipidemia and other metabolic diseases are known as secondary contributors to MS. This review aims to evaluate the current literature regarding the impact of various pathological conditions in MS on tendon recovery and illness, and to present a comprehensive overview of the effects of MS on tendon recovery and diseases, along with the accompanying molecular mechanisms.

12.
Med Clin (Barc) ; 2024 Apr 29.
Article in English, Spanish | MEDLINE | ID: mdl-38688732
13.
Bioorg Chem ; 146: 107263, 2024 May.
Article in English | MEDLINE | ID: mdl-38492493

ABSTRACT

The aberrant activation of NLRP3 inflammasome has been observed in various human diseases. Targeting the NLRP3 protein with small molecule inhibitors shows immense potential as an effective strategy for disease intervention. Herein, a series of novel biphenyl-sulfonamide NLRP3 inflammasome inhibitors were designed and synthesized. The representative compound H28 was identified as potent and specific NLRP3 inflammasome inhibitor with IC50 values of 0.57 µM. Preliminary mechanistic studies have revealed that compound H28 exhibits direct binding to the NLRP3 protein (KD: 1.15 µM), effectively inhibiting the assembly and activation of the NLRP3 inflammasome. The results in a mouse acute peritonitis model revealed that H28 effectively inhibit the NLRP3 inflammasome pathway, demonstrating their anti-inflammatory properties. Our findings strongly support the further development of H28 as potential lead compound for treating NLRP3-related diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Biphenyl Compounds , Sulfonamides/pharmacology , Sulfanilamide , Mice, Inbred C57BL
14.
J Alzheimers Dis Rep ; 8(1): 517-530, 2024.
Article in English | MEDLINE | ID: mdl-38549626

ABSTRACT

Background: Alzheimer's disease (AD) poses a growing public health challenge, particularly with an aging population. While extensive research has explored the relationships between AD, socio-demographic factors, and cardiovascular risk factors, a notable gap exists in understanding these connections within the Asian American elderly population. Objective: This study aims to address this gap by employing the Classification and Regression Tree (CART) approach to investigate the intricate interplay of socio-demographic variables, cardiovascular risk factors, sleep patterns, prior antidepressant use, and AD among Asian American elders. Methods: Data from the 2017 Uniform Data Set, provided by the National Alzheimer's Coordinating Center, were analyzed, focusing on a sample of Asian American elders (n = 4,343). The analysis utilized the Classification and Regression Tree (CART) approach. Results: CART analysis identified critical factors, including levels of independence, specific age thresholds (73.5 and 84.5 years), apnea, antidepressant use, and body mass index, as significantly associated with AD risk. Conclusions: These findings have far-reaching implications for future research, particularly in examining the roles of gender, cultural nuances, socio-demographic factors, and cardiovascular risk elements in AD within the Asian American elderly population. Such insights can inform tailored interventions, improved healthcare access, and culturally sensitive policies to address the complex challenges posed by AD in this community.

15.
RSC Adv ; 14(13): 8735-8739, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38495974

ABSTRACT

We report a galactosyl diiodo-BODIPY-based nanoparticles as type-I photosensitizer (PS) with high water solubility for HepG2 cell targeted photodynamic therapy. Functionalized galactoside and glucoside were introduced into diiodo-BODIPY to obtain BP1 and BP2, respectively. The glycolyl PSs could self-assemble to form the nanoparticles BP1-NP and BP2-NP with red-shifted near-infrared (NIR) absorption and fluorescence at 682 nm and 780 nm, as well as excellent chemo- and photo-stability. In comparison to the monomer in DMSO, the aggregated photosensitizers in the nanoparticles enabled the sensitization of oxygen to superoxide (O2˙-) through a type-I process, while repressing the generation of singlet oxygen (1O2) through a type-II process. The galactosyl-modified BP1-NPs could target and concentrate on HepG2 cells, subsequently generating O2˙- and 1O2 to trigger cell death under 660 nm light irradiation. This work provides an efficient strategy for the construction of glycoside-recognized type-I photosensitizers for tumor cell imaging and photodynamic therapy.

16.
J Control Release ; 368: 663-675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492862

ABSTRACT

Interleukin-2 (IL-2) exhibits the unique capacity to modulate immune functions, potentially exerting antitumor effects by stimulating immune responses, making it highly promising for immunotherapy. However, the clinical use of recombinant IL-2 protein faces significant limitations due to its short half-life and systemic toxicity. To overcome these challenges and fully exploit IL-2's potential in tumor immunotherapy, this study reports the development of a tumor-activated IL-2 mRNA, delivered via lipid nanoparticles (LNPs). Initially, ionizable lipid U-101 derived nanoparticles (U-101-LNP) were prepared using microfluidic technology. Subsequent in vitro and in vivo delivery tests demonstrated that U-101-LNP achieved more effective transfection than the approved ALC-0315-LNP. Following this, IL-2F mRNAs, encoding fusion proteins comprising IL-2, a linker, and CD25 (IL-2Rα), were designed and synthesized through in vitro transcription. A cleavable linker, consisting of the peptide sequence SGRSEN↓IRTA, was selected for cleavage by matrix metalloproteinase-14 (MMP-14). IL-2F mRNA was then encapsulated in U-101-LNP to create U-101-LNP/IL-2F mRNA complexes. After optimization, assessments of expression efficiency, masking, and release characteristics revealed that IL-2F with linker C4 demonstrated superior performance. Finally, the antitumor activity of IL-2F mRNA was evaluated. The results indicated that U-101-LNP/IL-2F mRNA achieved the strongest antitumor effect, with an inhibition rate of 70.3%. Immunohistochemistry observations revealed significant expressions of IL-2, IFN-γ, and CD8, suggesting an up-regulation of immunomodulation in tumor tissues. This effect could be ascribed to the expression of IL-2F, followed by the cleavage of the linker under the action of MMP-14 in tumor tissue, which sustainably releases IL-2. H&E staining of tissues treated with U-101-LNP/IL-2F mRNA showed no abnormalities. Further evaluations indicated that the U-101-LNP/IL-2F mRNA group maintained proper levels of inflammatory factors without obvious alterations in liver and renal functions. Taken together, the U-101-LNP/IL-2F mRNA formulation demonstrated effective antitumor activity and safety, which suggests potential applicability in clinical immunotherapy.


Subject(s)
Liposomes , Nanoparticles , Neoplasms , Humans , Interleukin-2/genetics , Matrix Metalloproteinase 14 , Immunotherapy , Neoplasms/therapy
17.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Article in English | MEDLINE | ID: mdl-38457059

ABSTRACT

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Senescence-Associated Secretory Phenotype , Mesenchymal Stem Cells/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Humans , Animals , Mice , Cell Proliferation , Cell Survival , Cellular Senescence , Culture Media, Conditioned/pharmacology , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , MCF-7 Cells
18.
Mar Environ Res ; 196: 106399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387226

ABSTRACT

As evaluation indicators of the primary productivity, the phytoplankton biomass and community structure are of great significance to the fishery industry, which can be driven by ocean currents, nutrients and water stratification. In the present study, the characteristics of phytoplankton assemblages in different water layers of a typical Yesso scallop farming area in Zhangzi Island, the North Yellow Sea were investigated from March 2021 to January 2022. According to the vertical distribution of temperature, water stratification was observed from June to August (stratification period), and disappeared in March, October and the following January with vertical homogeneity (mixing period). 18S rRNA gene sequencing results revealed that Pyrrophyta was the most dominant phylum during the sampling period, with high gene proportions in the stratification (63.36%) and mixing periods (77.35%). The gene proportion of Bacillariophyta in the stratification period was 5.44%, which was significantly lower than that in the mixing period of 8.93% (p < 0.05). Moreover, Pseudo-nitzschia, a toxin-producing taxon affiliated with Bacillariophyta, exhibited a significantly higher proportion in the stratification period than in the mixing period. During the stratification period, a number of toxin-producing taxa such as Pseudo-nitzschia and Karlodinium were enriched in the bottom layer, which was 1.29-fold and 1.37-fold of that in the surface layer, respectively. Redundancy analysis showed that phosphate and water temperature were major environmental factors driving the vertical distribution of phytoplankton assemblages. The phosphate (0.11 µM) and silicate (2.09 µM) concentrations in the surface layer approached the minimum threshold for phytoplankton growth, and the stoichiometric limitation of phosphate was detected in the surface and middle layers. Collectively, these results indicated that the decreased proportion ratio of Bacillariophyta to Pyrrophyta and unfavorable community composition of Bacillariophyta for scallops were observed during summer, which might result from the phosphate limitation driven by water stratification. The results will further our understanding of the dynamics of phytoplankton communities under the background of intensifying ocean stratification and provide ecological guidance for mollusc mariculture.


Subject(s)
Diatoms , Pectinidae , Animals , Phytoplankton , Water , China , Agriculture , Phosphates , Seasons
19.
Eur J Med Chem ; 266: 116127, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38224650

ABSTRACT

The occurrence of cancer is closely related to metabolism and epigenetics. Histone deacetylases (HDACs) play a crucial role in the regulation of gene expression as epigenetic regulators, while nicotinamide phosphoribosyltransferase (NAMPT) is significantly involved in maintaining cellular metabolism. In this study, we rationally designed a series of novel HDAC/NAMPT dual inhibitors based on the structural similarity between HDAC and NAMPT inhibitors. The representative compounds 39a and 39h exhibit significant selective inhibitory activity on HDAC1-3 with IC50 values of 0.71-25.1 nM, while displaying modest activity against NAMPT. Compound 39h did not exhibit inhibitory activity against 370 kinases, demonstrating its target specificity. These two compounds exhibit potent anti-proliferative activity in multiple leukemia cell lines with low nanomolar IC50s. It is worth noticing that the dual inhibitors 39a and 39h overcome the primary resistance of HDAC or NAMPT single target inhibitor in p53-null AML cell lines, with the induction of apoptosis-related cell death. NMN recovers the cell death induced by HDAC/NAMPT dual inhibitors, which indicates the lethal effects are caused by the inhibition of NAD biosynthesis pathway as well as HDAC. This research provides an effective strategy to overcome the limitations of HDAC inhibitors in treating p53-null leukemia.


Subject(s)
Histone Deacetylase Inhibitors , Leukemia , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Tumor Suppressor Protein p53 , Nicotinamide Phosphoribosyltransferase/metabolism , Cell Line, Tumor , Leukemia/drug therapy , Leukemia/metabolism
20.
J Environ Manage ; 353: 120020, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38278115

ABSTRACT

Dredged soil and phosphogypsum (PG) are waste materials that must be treated to reduce their negative environmental effects. Guided by the concept of waste treatment, this study proposed the use of PG as a supplementary cementitious material to stabilize waste-dredged soil, and calcium aluminate cement (CAC) was selected to further improve the strength of the cement-treated dredged soil. Several laboratory tests were conducted to investigate the pH, unconfined compressive strength (UCS), and failure strain of the cement-treated soils in different proportions. Microstructural and mineralogical tests were performed to reveal the mechanisms underlying the strength improvement of PG and CAC. The results showed that both PG and CAC enhanced the strength of cement-treated dredged soil. PG provided SO2- 4 to promote the formation of ettringite (aluminum ferrite trisulfate (AFt)), whereas CAC neutralized the acidity of PG and provided reactants to the reaction system, leading to an increase in the pH and strength with an increase in the relative CAC content. Meanwhile, an exponential relationship was obtained between pH and qu. Mineralogical changes demonstrated that the major hydration products of cementitious materials, such as calcium silicate (aluminate) hydrate (C-(A)-S-H), AFt, and calcium aluminate hydrate (C-A-H), enhanced the strength by filling pores between particles and bridging soil particles. However, excess CAC content may not be favorable for the later strength formation, the relative CAC content is recommended to be in the range of 40%-60%. Compared to using sand, the construction of a square kilometer of reclamation consumed 3.5 million tons of PG, and saved 1.54 billion USD by using dredged soil as raw material. Hence, the use of PG to treat dredged soils will have great environmental sustainability, economic benefits, and engineering value.


Subject(s)
Aluminum Compounds , Calcium Compounds , Phosphorus , Soil , Solid Waste , Calcium Sulfate
SELECTION OF CITATIONS
SEARCH DETAIL
...