Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 11(2): 388-407, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37975715

ABSTRACT

Lithium metal anodes (LMAs) are ideal anode candidates for achieving next-generation high-energy-density battery systems due to their high theoretical capacity (3680 mA h g-1) and low working potential (-3.04 V versus the standard hydrogen electrode). However, the non-ideal solid electrolyte interface (SEI) derived from electrolyte/electrode interfacial reactions plays a vital role in the lithium deposition/stripping process and battery cycling performance. The composition and morphology of a SEI, which is sensitive to the outside environment, make it difficult to characterize and understand. With the development of characterization techniques, the mechanism, composition, and structure of a SEI can be better understood. In this review, the mechanism formation, the structure model evolution, and the composition of a SEI are briefly presented. Moreover, the development of in situ characterization techniques in recent years is introduced to better understand a SEI followed by the properties of the SEI, which are beneficial to the battery performance. Furthermore, recent optimization strategies of the SEI including the improvement of intrinsic SEIs and construction of artificial SEIs are summarized. Finally, the current challenges and future perspectives of SEI research are summarized.

2.
J Inflamm Res ; 16: 5061-5067, 2023.
Article in English | MEDLINE | ID: mdl-37936597

ABSTRACT

Immune checkpoint inhibitors such as monoclonal antibodies have been used recently with greater effect for the management of non-small cell lung cancer (NSCLC). Sintilimab, a fully human IgG4 monoclonal antibody is specific for the immune checkpoint protein programmed cell death receptor-1 (PD-1). It is a common medication adopted for treating Hodgkin's lymphoma and NSCLC. The adverse effects associated with the use of monoclonal antibodies should be closely monitored and in the current report, the use of sintilimab for treating NSCLC led to skin-associated adverse effects such as Stevens-Johnson syndrome and toxic epidermal necrolysis. Genetic testing showed that genes such as KRAS, CREBBP, NTRK1, RAF1, and TP53 were mutated. Initial visible symptom included the formation of a vesicular rash on the skin that had spread to the upper limbs, chest, and dorsum 1 week after the administration of sintilimab. The patient received anti-inflammatory agents to prevent worsening of the rashes and further infections. When the vesicles in back and limbs enlarged and the neck skin began to desquamate, the patient was diagnosed with Stevens-Johnson syndrome and sintilimab-induced toxic epidermal necrolysis. Toxic epidermal necrolysis was diagnosed via clinical symptoms and physical examination. The patient also reported the symptoms of oral mucositis. As soon as the dose of sintilimab was reduced to 20 mg/day, the skin-associated condition of the patient began to improve. Although the lump in the lungs decreased considerably 45 days after initial administration of sintilimab, the medication was stopped from use as soon as the skin-related symptoms improved after its withdrawal. This report suggests that close monitoring, personal care, and proper use of medications such as sintilimab should be implemented to avoid such rare skin-associated toxicities as an adverse effect.

3.
Small ; 19(28): e2300023, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37191227

ABSTRACT

Uncontrolled ion transport and susceptible SEI films are the key factors that induce lithium dendrite growth, which hinders the development of lithium metal batteries (LMBs). Herein, a TpPa-2SO3 H covalent organic framework (COF) nanosheet adhered cellulose nanofibers (CNF) on the polypropylene separator (COF@PP) is successfully designed as a battery separator to respond to the aforementioned issues. The COF@PP displays dual-functional characteristics with the aligned nanochannels and abundant functional groups of COFs, which can simultaneously modulate ion transport and SEI film components to build robust lithium metal anodes. The Li//COF@PP//Li symmetric cell exhibits stable cycling over 800 h with low ion diffusion activation energy and fast lithium ion transport kinetics, which effectively suppresses the dendrite growth and improves the stability of Li+ plating/stripping. Moreover, The LiFePO4//Li cells with COF@PP separator deliver a high discharge capacity of 109.6 mAh g-1 even at a high current density of 3 C. And it exhibits excellent cycle stability and high capacity retention due to the robust LiF-rich SEI film induced by COFs. This COFs-based dual-functional separator promotes the practical application of lithium metal batteries.

4.
Mater Horiz ; 10(9): 3218-3236, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37254667

ABSTRACT

Homogeneous ion transport during Li+ plating/stripping plays a significant role in the stability of Li metal anodes (LMAs) and the electrochemical performance of Li metal batteries (LMBs). Controlled ion transport with uniform Li+ distribution is expected to suppress notorious Li dendrite growth while stabilizing the susceptible solid electrolyte interfacial (SEI) film and optimizing the electrochemical stability. Here, we are committed to rendering a comprehensive study of Li+ transport during the Li plating/stripping process related to the interactions between the Li dendrites and SEI film. Moreover, rational ion modulation strategies based on functional separators, artificial SEI films, solid-state electrolytes and structured anodes are introduced to homogenize Li+ flux and stabilize the lithium metal surface. Finally, the current issues and potential opportunities for ion transport regulation to boost the high energy density of LMBs are described.

5.
Pathol Res Pract ; 241: 154256, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455367

ABSTRACT

Colorectal cancer (CRC) is a deadly malignancy and therapeutic approaches for CRC are evolving every day. Anoikis is a key mechanism for programmed cell death of cancer cells that undergo anchorage-independent growth at a different matrix than the one which is expected. Yet, anoikis is a less studied mechanism of cell death in comparison to other mechanisms such as apoptosis. Relating to this, resistance to anoikis among cancer cells remains critical for improved metastasis and survival in a new environment evading anoikis. Since CRC cells have the ability to metastasize from proximal sites to secondary organs such as liver and promote cancer in those distant sites, a clear knowledge of the mechanisms essential for anchorage-independent growth and subsequent metastasis is necessary to counteract CRC progression and spread. Therefore, the identification of novel drug candidates and studying the roles of anoikis in assisting CRC therapy using such drugs can prevent anchorage-independent cancer cell growth. Additionally, the identification of novel biomarkers or therapeutic targets seems essential for implementing superior therapy, impeding relapse among malignant cells and improving the survival rate of clinical patients. As there are no reviews published on this topic till date, anoikis as a mechanism of cell death and its therapeutic roles in CRC are discussed in this review. In addition, several molecules were identified as therapeutic targets for CRC.


Subject(s)
Anoikis , Colorectal Neoplasms , Humans , Anoikis/physiology , Colorectal Neoplasms/pathology , Cell Line, Tumor
6.
J Colloid Interface Sci ; 633: 424-431, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36462265

ABSTRACT

Zinc-air batteries (ZABs) are regarded as attractive devices for electrochemical energy storage and conversion due to their outstanding electrochemical performance, low price, and high safety. However, it remains a challenge to design a stable and efficient bifunctional oxygen catalyst that can accelerate the reaction kinetics and improve the performance of ZABs. Herein, a phosphorus-doped transition metal selenide/carbon composite catalyst derived from metal-organic frameworks (P-CoSe2/C@CC) is constructed by a self-supporting carbon cloth structure through a simple solvothermal process with subsequent selenization and phosphatization. The P-CoSe2/C@CC exhibits a low overpotential of 303.1 mV at 10 mA cm-2 toward the oxygen evolution reaction and an obvious reduction peak for the oxygen reduction reaction. The abovementioned electrochemical performances for the P-CoSe2/C@CC are attributed to the specific architecture, the super-hydrophilic surface, and the P-doping effect. Remarkably, the homemade zinc-air battery based on our P-CoSe2/C@CC catalyst shows an expected peak power density of 124.4 mW cm-2 along with excellent cycling stability, confirming its great potential application in ZABs for advanced bifunctional electrocatalysis.

7.
ACS Appl Mater Interfaces ; 14(46): 52193-52203, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36368002

ABSTRACT

Dual-band electrochromic smart windows that can dynamically and independently control incident solar irradiation and visible light are envisioned as intelligent technology to reduce power consumption of buildings. However, there is still a great challenge to put the dual-band electrochromic technology into practice due to some limits in material systems and preparation techniques. Herein, a new electrochromic material of Li4Ti5O12 is developed to implement the dual-band optical modulation behavior, which could be further improved by a precise control of the lithium content in the active material. It could separately modulate the light and heat based on regulation of the transmittance of visible and near-infrared light. This enables Li4Ti5O12 to operate in three distinct modes of bright, cool, and dark, so as to meet various indoor needs. The optical transmittance contrast reaches over 60% at both visible- and near-infrared-light regions between different modes, and a large range of apparent temperature adjustments (7 °C) could be achieved. The prototype device based on dual-band electrochromic Li4Ti5O12 is further developed into a smart window of a house model, which exhibits good optical and thermal modulation behaviors in response to a high-temperature environment. This work provides a new material system for achieving dual-band electrochromic optical modulation toward smart energy-saving window applications.

8.
Polymers (Basel) ; 14(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36297933

ABSTRACT

It is highly expected to develop a simple and effective method to reinforce polyamide 6 (PA6) to enlarge its application potential. This is challenging because of frequently encountered multi-component phase separations. In this paper, we propose a novel method to solve this issue, essentially comprising two steps. Firstly, a kind of poly (amide-block-aramid) block copolymers, i.e., thermotropic liquid crystalline polymer (TLCP)-polyamide 6 (TLCP-PA6), that contains both rigid aromatic liquid crystal blocks, and flexible alkyl blocks were synthesized. It is unique in that TLCP is chemically linked with PA6, which is advantageous in excellent chemical and physical miscibility with the precursors of monomer casting polyamide 6 (MCPA6), i.e., ε-caprolactam. Secondly, such newly synthesized block copolymer TLCP-PA6 was dissolved in the melting ε-caprolactam, and followed by in situ polymerization to obtain composite polymer blends, i.e., MCPA6/TLCP-PA6. The thermodynamic, morphological, and crystalline properties of MCPA6/TLCP-PA6 can be easily manipulated by tailoring the loading ratios between TLCP-PA6 and ε-caprolactam. Especially, at the optimized condition, such MCPA6/TLCP-PA6 blends show an excellent miscibility. Systematic characterizations, including nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimeter (DSC), and polarizing optical microscope (POM), were performed to confirm these statements. In view of these results, it is anticipated that the overall mechanical properties of such PA6-based polymer composites will be satisfactory, which should enable applications in the modern plastic industry and other emerging areas, such as wearable fabrics.

9.
Nanoscale ; 13(45): 18883-18911, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34783819

ABSTRACT

Functional separators have played important roles in improving the electrochemical performance of lithium-sulfur (Li-S) batteries by addressing the key issues of both the sulfur cathode and lithium anode. Compared with other materials that are used for separator functionalization, two-dimensional (2D) materials with atomic layer thickness and infinite lateral dimensions feature several advantages of ultra-thin laminate structure, remarkable physical properties and tunable surface chemistry, which show potential applications in separator functionalization towards addressing the issues of both the shuttle effect and formation of Li dendrites in Li-S batteries. In this review, the unique advantages of 2D materials for separator functionalization in Li-S batteries and their common construction methods are introduced. Then, recent progress and advances in the construction of 2D materials functional separators are summarized in detail towards inhibiting the shuttle effect of polysulfides and suppressing Li dendrite growth in Li-S batteries. Finally, some opportunities and challenges of 2D materials for constructing high-performance functional separators are proposed. We anticipate that this review will provide new insights into separator functionalization for developing advanced Li-S batteries.

10.
ACS Appl Mater Interfaces ; 13(42): 50319-50328, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34637271

ABSTRACT

Electrochromic devices (ECDs) exhibiting tunable optical and thermal modulation in the infrared (IR) region have attracted extensive attention in recent years due to their attractive application prospects in both military and civilian settings. However, considering the continuous energy supply needed for driving the device operation, it is desired to develop advanced IR-ECDs with low energy consumption. Herein, a flexible self-driven IR-ECD is constructed for achieving variable optical and thermal management in a low-energy mode. In this device, a built-in potential difference of 1.36 V exists between the EC polyaniline cathode and the aluminum foil anode. Consequently, there is a rapid and obvious increase in the IR reflectance of the device after connecting the two electrodes. Such a self-driven reflectance contrast is over 20% at the wavelength of 1500 nm, and the coloration efficiency of the device reaches up to 93.6 cm2 C-1. Meanwhile, the maximum apparent temperature modulation on the surface of the device reaches up to 5.6 °C. Then, the self-driven IR-ECD could recover to its original state driven by a solar cell, indicating good reversibility and stability. We anticipate that this work may provide a new insight into developing advanced self-driven IR-ECDs for applications in dynamic military camouflage and commercial thermal control.

11.
Molecules ; 26(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34500830

ABSTRACT

Metal organic frameworks (MOFs) have been considered as one of the most promising electrode materials for electrochemical capacitors due to their large specific surface area and abundant pore structure. Herein, we report a Co-MOF electrode with a vertical-standing 2D parallelogram-like nanoarray structure on a Ni foam substrate via a one-step solvothermal method. The as-prepared Co-MOF on a Ni foam electrode delivered a high area-specific capacitance of 582.0 mC cm-2 at a current density of 2 mA cm-2 and a good performance rate of 350.0 mC cm-2 at 50 mA cm-2. Moreover, an asymmetric electrochemical capacitor (AEC) device (Co-MOF on Ni foam//AC) was assembled by using the as-prepared Co-MOF on a Ni foam as the cathode and a active carbon-coated Ni foam as the anode to achieve a maximum energy density of 0.082 mW cm-2 at a power density of 0.8 mW cm-2, which still maintained 0.065 mW cm-2 at a high power density of 11.94 mW cm-2. Meanwhile, our assembled device exhibited an excellent cycling stability with a capacitance retention of nearly 100% after 1000 cycles. Therefore, this work provides a simple method to prepare MOF-based material for the application of energy storage and conversion.

12.
Mater Horiz ; 8(1): 12-32, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-34463695

ABSTRACT

Lithium metal battery (LMB) is considered to be one of the most promising electrochemical energy storage devices due to the high theoretical specific capacity and the lowest redox potential of metallic lithium; however, some key issues caused by lithium dendrites on the lithium metal anode seriously hinder its real-world applications. As an indispensable part of LMBs, the separator could serve as a physical barrier to prevent direct contact of the two electrodes and control ionic transport in batteries; it is an ideal platform for the suppression of lithium dendrites. In this review, the mechanism of lithium dendrite nucleation and growth are firstly discussed and then some advanced techniques are introduced for the precise characterization of lithium dendrites. On the basis of dendritic nucleation and growth principle, several feasible strategies are summarized for suppressing lithium dendrites by utilizing functional separators, including providing a mechanical barrier, promoting homogeneous lithium deposition, and regulating ionic transport. Finally, some challenges and prospects are proposed to clear the future development of functional separators. We anticipate that this paper will provide a new insight into the design and construction of functional separators for addressing the issues of lithium dendrites in high-energy batteries.

13.
Adv Sci (Weinh) ; 8(12): 2100347, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34194948

ABSTRACT

Catalytically active metals atomically dispersed on supports presents the ultimate atom utilization efficiency and cost-effective pathway for electrocatalyst design. Optimizing the coordination nature of metal atoms represents the advanced strategy for enhancing the catalytic activity and the selectivity of single-atom catalysts (SACs). Here, we designed a transition-metal based sulfide-Ni3S2 with abundant exposed Ni vacancies created by the interaction between chloride ions and the functional groups on the surface of Ni3S2 for the anchoring of atomically dispersed Pt (PtSA-Ni3S2). The theoretical calculation reveals that unique Pt-Ni3S2 support interaction increases the d orbital electron occupation at the Fermi level and leads to a shift-down of the d -band center, which energetically enhances H2O adsorption and provides the optimum H binding sites. Introducing Pt into Ni position in Ni3S2 system can efficiently enhance electronic field distribution and construct a metallic-state feature on the Pt sites by the orbital hybridization between S-3p and Pt-5d for improved reaction kinetics. Finally, the fabricated PtSA-Ni3S2 SAC is supported by Ag nanowires network to construct a seamless conductive three-dimensional (3D) nanostructure (PtSA-Ni3S2@Ag NWs), and the developed catalyst shows an extremely great mass activity of 7.6 A mg-1 with 27-time higher than the commercial Pt/C HER catalyst.

14.
Nat Commun ; 12(1): 3783, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34145269

ABSTRACT

Single-atom catalysts provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However, the sluggish activity of the catalysts for alkaline water dissociation has hampered advances in highly efficient hydrogen production. Herein, we develop a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline hydrogen evolution catalyst. It is found that Pt single atom coupled with NiO/Ni heterostructure enables the tunable binding abilities of hydroxyl ions (OH*) and hydrogen (H*), which efficiently tailors the water dissociation energy and promotes the H* conversion for accelerating alkaline hydrogen evolution reaction. A further enhancement is achieved by constructing PtSA-NiO/Ni nanosheets on Ag nanowires to form a hierarchical three-dimensional morphology. Consequently, the fabricated PtSA-NiO/Ni catalyst displays high alkaline hydrogen evolution performances with a quite high mass activity of 20.6 A mg-1 for Pt at the overpotential of 100 mV, significantly outperforming the reported catalysts.

15.
Infect Genet Evol ; 93: 104946, 2021 09.
Article in English | MEDLINE | ID: mdl-34052417

ABSTRACT

Microorganisms have been known to coexist in various parts of human body including the gut. The interactions between microbes and the surrounding tissues of the host are critical for fine fettle of the gut. The incidence of such microorganisms tends to vary among specific type of cancer affected individuals. Such microbial communities of specific tumor sites in cancer affected individuals could plausibly be used as prognostic and/or diagnostic markers for tumors associated with that specific site. Microorganisms of intestinal and non-intestinal origins including Helicobacter pylori can target several organs, act as carcinogens and promote cancer. It is interesting to note that diets causing inflammation can also increase the cancer risk. Yet, dietary supplementation with prebiotics and probiotics can reduce the incidence of cancer. Therefore, both diet and microbial community of the gut have dual roles of prevention and oncogenesis. Hence, this review intends to summarize certain important details related to gut microbiome and cancer.


Subject(s)
Carcinogenesis , Gastrointestinal Microbiome , Inflammation/microbiology , Microbiota , Neoplasms/therapy , Humans
16.
ChemSusChem ; 14(3): 792-807, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33258550

ABSTRACT

Lithium-sulfur batteries (LSBs) have become one of the most promising candidates for next-generation energy storage systems owing to their high theoretical energy density, environmental friendliness, and cost effectiveness. However, real-word applications are seriously restricted by an undesirable shuttle effect and Li dendrite formation. In essence, uncontrollable anion transport is a key factor that causes both polysulfide shuttling and dendrite formation, which creates the possibility of simultaneously addressing the two critical issues in LSBs. An effective strategy to control anion transport is the construction of cation-selective separators. Significant progress has been achieved in the inhibition of the shuttle effect, whereas addressing the problem of Li dendrite formation by utilizing a cation-selective separator is still under way. From this viewpoint, this Review analyzes critical issues with regard to the shuttle effect and Li dendrite formation caused by uncontrollable anion transport, based on which roles and advantages of cation-selective separators toward high-performance LSBs are presented. According to the separator-construction principle, the latest advances and progress in cation-selective separators in inhibiting the shuttle effect and Li dendrite formation are reviewed in detail. Finally, some challenges and prospects are proposed for the future development of cation-selective separators. This Review is anticipated to provide a new perspective for simultaneously addressing the two critical issues in LSBs.

17.
Bioorg Chem ; 103: 104230, 2020 10.
Article in English | MEDLINE | ID: mdl-32916540

ABSTRACT

Inspired with an increasing environmental awareness, we performed an eco-friendly amenable process for the synthesis of silver nanoparticles (AgNPs) using the catkins of Piper longum as an alternative approach with the existing methods of using plant extracts. The fabrication of nanoparticles occurred within 10 min. This was initially observed by colour change of the solution. UV-visible spectroscopic studies (UV-Vis) were performed for further confirmation. The analysis elucidated that the surface plasmon resonance (SPR) was specifically corresponding to AgNPs. Fourier transform infrared spectrophotometry (FTIR) studies indicated that polyphenols could possibly be the encapsulating agents. The size and shape of the nanoparticles was analysed using Transmission electron microscopy (TEM). The nanoparticles were predominant spheres ranging between 10 and 42 nm at two different scales. The formation of elemental silver was confirmed further by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD). GC-MS analysis was used to identify the possible encapsulates on the nanoparticles. The antibacterial effect of the biosynthesized AgNPs was tested against two gram-positive (Bacillus cereus and Staphylococcus aureus), and five gram-negative (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhi) bacteria. Outcomes of the study suggest that these pathogens were susceptible to the AgNPs. This is the first ever international report on correlating the antibacterial effect of silver nanoparticles using mathematical modelling with a conventional antimicrobial assay. The results indicate that nanoparticles of silver synthesized using catkin extract of P. longum can be exploited towards the development of potential antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Piper/chemistry , Plant Extracts/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Microbial Sensitivity Tests , Models, Biological , Silver/chemistry
18.
Nanoscale ; 12(30): 15923-15943, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32510069

ABSTRACT

Electrochemical power sources, as one of the most promising energy storage and conversion technologies, provide great opportunities for developing high energy density electrochemical devices and portable electronics. However, uncontrolled ionic transport in electrochemical energy conversion, typically undesired anion transfer, usually causes some issues degrading the performance of energy storage devices. Nanochannels offer an effective strategy to solve the ionic transport problems for boosting electrochemical energy storage and conversion. In this review, the advantages of nanochannels for electrochemical energy storage and conversion and the construction principle of nanochannels are introduced, including ion selectivity and ultrafast ion transmission of nanochannels, which are considered as two critical factors to achieve highly efficient energy conversion. Recent advances in applications of nanochannels in lithium secondary batteries (LSBs), electrokinetic energy conversion systems and concentration cells are summarized in detail. Nanochannels exist in the above systems in two typical forms: functional separator and electrode protective layer. Current research on nanochannel-based LSBs is still at the early stage, and deeper and broader applications are expected in the future. Finally, the remaining challenges of nanochannel fabrication, performance improvement, and intelligent construction are presented. It is envisioned that this paper will provide new insights for developing high-performance and versatile energy storage electronics based on nanochannels.

19.
Pregnancy Hypertens ; 21: 132-138, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32512528

ABSTRACT

Preeclampsia (PE) is one type of hypertension during pregnancy that seriously threatens maternal and infant health. Trophoblast dysfunction, such as decreased proliferation and migration, is closely related to the occurrence and development of PE. MicroRNAs (miRNAs) have been proven to play an important role in many diseases, including PE. miR-384 was reported to play a regulatory role in promoting cell apoptosis and inhibiting proliferation, migration and invasion in a variety of tumors. Previously, we found that miR-384 is upregulated in the placenta and plasma in the context of PE. In this study, we elucidated the function of miR-384 in the trophoblast cell line HTR-8/SVneo and the trophoblastic tumor cell line JEG-3. Cell proliferation and migration were inhibited by miR-384 overexpression but promoted by miR-384 downregulation. Subsequently, polypyrimidine tract-binding protein 3(PTBP3) was found to be a direct target gene of miR-384. PTBP3 was downregulated in placental tissues from PE patients, and a negative correlation was found between PTBP3 and miR-384. Our results suggest that the miR-384/PTBP3 axis plays an important role in regulating trophoblast function during the progression of PE, and these data provide novel insight into the molecular pathogenesis of this disorder.


Subject(s)
MicroRNAs/genetics , Polypyrimidine Tract-Binding Protein/genetics , Pre-Eclampsia/genetics , Trophoblasts/metabolism , Adult , Case-Control Studies , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Knockdown Techniques , Humans , Pregnancy
20.
Life Sci ; 220: 156-161, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30716338

ABSTRACT

Magnetic nanoparticles (MNPs) are promising candidates for drug delivery and treatment of various disorders. Toxicity evaluation is a critical point in the development of nanoformulations and therefore, draws considerable attention. Formulations involving individual or combinatorial nanoparticle suspensions might be used for targeted delivery and treatment. This might be a evaluated further for safety related issues considering future medications based on MNPs. Nanoparticle distribution in the body is dependent on its surface characteristics. Size, dose and routes of nanoparticle entry have to be taken into consideration for future assays.


Subject(s)
Magnetite Nanoparticles/toxicity , Nanoparticles/adverse effects , Animals , Drug Delivery Systems/adverse effects , Humans , Magnetite Nanoparticles/adverse effects , Nanoparticles/toxicity , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...