Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Heliyon ; 10(7): e26791, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586373

ABSTRACT

Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of SIRPA in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages. Ablation of SIRPA transcriptionally downregulates solute carrier family 22 member 5 (SLC22A5) in the lipopolysaccharide (LPS)-stimulated macrophages that efferocytose apoptotic neutrophils (PMNs). Targeting SLC22A5 renders mitophagy inhibition of macrophages in response to LPS stimuli, improves survival and deters development of septic AKI. Our study supports further clinical investigation of CD47-SIRPα signalling in sepsis and proposes that SLC22A5 might be a promising immunotherapeutic target for septic AKI.

2.
J Colloid Interface Sci ; 664: 691-703, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492370

ABSTRACT

Stretchable flexible thin-film electrodes are extensively explored for developing new wearable energy storage devices. However, traditional carbon-based materials used in such independent electrodes have limited practical applications owing to their low energy storage capacity and energy density. To address this, a unique structure and remarkable mechanical stability thin-film flexible positive electrode comprising CoS1.97 nanoparticles decorated hollow CuS cubes and reduced graphene oxide (rGO), hereinafter referred to as CCSrGO, is prepared. Transition metal sulfide CoS1.97 and CuS shows high energy density owing to the synergistic effects of its active components. The electrode can simultaneously meet the high-energy density and safety requirements of new wearable energy storage devices. The electrode has excellent electrochemical performance (1380 F/g at 1 A/g) and ideal capacitance retention (93.8 % after 10,000 cycles) owing to its unique three-dimensional hollow structure and polymetallic synergies between copper and cobalt elements, which are attributed to their different energy storage mechanisms. Furthermore, a flexible asymmetric supercapacitor (FASC) was constructed using CCSrGO as the positive electrode and rGO as the negative electrode (CCSrGO//rGO), which delivers an energy density of 100 Wh kg-1 and a corresponding power density of 2663 W kg-1 within a voltage window of 0-1.5 V. The resulting FASC can power a light-emitting diode (LED) at different bending and twisting angles, exerting little effect on the capacitance. Therefore, the prepared CCSrGO//rGO FASC devices show great application prospects in energy storage.

3.
Biosens Bioelectron ; 253: 116173, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38432075

ABSTRACT

Since the emergence of single-cell electroanalysis, the two-electrode system has become the predominant electrochemical system for real-time behavioral analysis of single-cell and multicellular populations. However, due to the transmembrane placement of the two electrodes, cellular activities can be interrupted by the transmembrane potentials, and the test results are susceptible to influences from factors such as intracellular solution, membrane, and bulk solution. These limitations impede the advancement of single-cell analysis. Here, we propose a highly miniaturized and integrated in situ self-referenced intracellular two-electrode system (IS-SRITES), wherein both the working and reference electrodes are positioned inside the cell. Additionally, we demonstrated the stability (0.28 mV/h) of the solid-contact in situ Ag/AgCl reference electrode and the ability of the system to conduct standard electrochemical testing in a wide pH range (pH 6.0-8.0). Cell experiments confirmed the non-destructive performance of the electrode system towards cells and its capacity for real-time monitoring of intra- and extracellular pH values. Moreover, through equivalent circuits, finite element simulations, and drug delivery experiments, we illustrated that the IS-SRITES can yield more accurate test results and exhibit enhanced resistance to interference from the extracellular environment. Our proposed system holds the potential to enable the precise detection of intracellular substances and optimize the existing model of the electrode system for intracellular signal detection, thereby spearheading advancements in single-cell analysis.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Electrodes , Single-Cell Analysis
4.
Adv Sci (Weinh) ; 11(18): e2309894, 2024 May.
Article in English | MEDLINE | ID: mdl-38460163

ABSTRACT

Real-time telemedicine detection can solve the problem of the shortage of public medical resources caused by the coming aging society. However, the development of such an integrated monitoring system is hampered by the need for high-performance sensors and the strict-requirement of long-distance signal transmission and reproduction. Here, a bionic crack-spring fiber sensor (CSFS) inspired by spider leg and cirrus whiskers for stretchable and weavable electronics is reported. Trans-scale conductive percolation networks of multilayer graphene around the surface of outer spring-like Polyethylene terephthalate (PET) fibers and printing Ag enable a high sensitivity of 28475.6 and broad sensing range over 250%. The electromechanical changes in different stretching stages are simulated by Comsol to explain the response mechanism. The CSFS is incorporated into the fabric and realized the human-machine interactions (HMIs) for robot control. Furthermore, the 5G Narrowband Internet of Things (NB-IoT) system is developed for human healthcare data collection, transmission, and reproduction together with the integration of the CSFS, illustrating the huge potential of the approach in human-machine communication interfaces and intelligent telemedicine rehabilitation and diagnosis monitoring.

5.
Hortic Res ; 11(1): uhad253, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38486813

ABSTRACT

Nitrogen (N) and potassium (K) are two important mineral nutrients in regulating leaf photosynthesis. However, the influence of N and K interaction on photosynthesis is still not fully understood. Using a hydroponics approach, we studied the effects of different N and K conditions on the physiological characteristics, N allocation and photosynthetic capacity of apple rootstock M9T337. The results showed that high N and low K conditions significantly reduced K content in roots and leaves, resulting in N/K imbalance, and allocated more N in leaves to non-photosynthetic N. Low K conditions increased biochemical limitation (BL), mesophyll limitation (MCL), and stomatal limitation (SL). By setting different N supplies, lowering N levels under low K conditions increased the proportion of water-soluble protein N (Nw) and sodium dodecyl sulfate-soluble proteins (Ns) by balancing N/K and increased the proportion of carboxylation N and electron transfer N. This increased the maximum carboxylation rate and mesophyll conductance, which reduced MCL and BL and alleviated the low K limitation of photosynthesis in apple rootstocks. In general, our results provide new insights into the regulation of photosynthetic capacity by N/K balance, which is conducive to the coordinated supply of N and K nutrients.

6.
Nat Commun ; 15(1): 1327, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351088

ABSTRACT

Inflammation, caused by accumulation of inflammatory cytokines from immunocytes, is prevalent in a variety of diseases. Electro-stimulation emerges as a promising candidate for inflammatory inhibition. Although electroacupuncture is free from surgical injury, it faces the challenges of imprecise pathways/current spikes, and insufficiently defined mechanisms, while non-optimal pathway or spike would require high current amplitude, which makes electro-stimulation usually accompanied by damage and complications. Here, we propose a neuromorphic electro-stimulation based on atomically thin semiconductor floating-gate memory interdigital circuit. Direct stimulation is achieved by wrapping sympathetic chain with flexible electrodes and floating-gate memory are programmable to fire bionic spikes, thus minimizing nerve damage. A substantial decrease (73.5%) in inflammatory cytokine IL-6 occurred, which also enabled better efficacy than commercial stimulator at record-low currents with damage-free to sympathetic neurons. Additionally, using transgenic mice, the anti-inflammation effect is determined by ß2 adrenergic signaling from myeloid cell lineage (monocytes/macrophages and granulocytes).


Subject(s)
Cytokines , Inflammation , Mice , Animals , Inflammation/metabolism , Cytokines/metabolism , Adrenergic Agents , Mice, Transgenic , Neurons/metabolism
7.
J Colloid Interface Sci ; 661: 409-435, 2024 May.
Article in English | MEDLINE | ID: mdl-38306750

ABSTRACT

Water-splitting electrocatalysis has gained increasing attention as a promising strategy for developing renewable energy in recent years, but its high overpotential caused by the unfavorable thermodynamics has limited its widespread implementation. Therefore, there is an urgent need to design catalytic materials with outstanding activity and stability that can overcome the high overpotential and thus improve the electrocatalytic efficiency. Metal-organic frameworks (MOFs) based and/or derived materials are widely used as water-splitting catalysts because of their easily controlled structures, abundant heterointerfaces and increased specific surface area. Herein, some recent research findings on MOFs-based/derived materials are summarized and presented. First, the mechanism and evaluation parameters of electrochemical water splitting are described. Subsequently, advanced modulation strategies for designing MOFs-based/derived catalysts and their catalytic performance toward water splitting are summarized. In particular, the correlation between chemical composition/structural functionalization and catalytic performance is highlighted. Finally, the future outlook and challenges for MOFs materials are also addressed.

8.
Carbohydr Polym ; 327: 121664, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171681

ABSTRACT

Herein, we reported a general and green synthetic strategy for photochromic functional alginate derivatives grafting with isoindolinone spiroxanthenes. Under mild condition, diverse 2-aminoalkyl isoindolinone spiroxanthene derivatives have been prepared from organic photochromic isobenzofuranone spiroxanthenes (including rhodamine B, rhodamine 6G and fluorescein), and grafted on alginate chains through amidation reaction using diamine as a linkage with water as a green solvent at room temperature. The photochromic properties of the fluorophores-modified polymers and the effect of pH value have been explored. Under acid conditions, the spiroisoindolinone rings of alginate derivatives are opened resulting in showing absorption bands and fluorescence with orange to green emission, while the alginate derivatives turned to colourless under basic conditions which is reversibly. In addition to biodegradability and biocompatibility, the polymers exhibit good film-forming properties simultaneously. The films and fibers produced from the alginate derivatives also project good fluorescence properties.

9.
Small ; 20(6): e2305288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37775328

ABSTRACT

Clever and rational design of structural hierarchy, along with precise component adjustment, holds profound significance for the construction of high-performance supercapacitor electrode materials. In this study, a binder-free self-supported CCO@N0.5 C0.5 OH/NF cathode material is constructed with hierarchical hetero-core-shell honeycomb nanostructure by first growing CuCo2 O4 (CCO) nanopin arrays uniformly on highly conductive nickel foam (NF) substrate, and then anchoring Ni0.5 Co0.5 (OH)2 (N0.5 C0.5 OH) bimetallic hydroxide nanosheet arrays on the CCO nanopin arrays by adjusting the molar ratio of Ni(OH)2 and Co(OH)2 . The constructed CCO@N0.5 C0.5 OH/NF electrode material showcases a wealth of multivalent metal ions and mesopores, along with good electrical conductivity, excellent electrochemical reaction rates, and robust long-term performance (capacitance retention rate of 87.2%). The CCO@N0.5 C0.5 OH/NF electrode, benefiting from the hierarchical structure of the material and the exceptional synergy between multiple components, demonstrates an excellent specific capacitance (2553.6 F g-1 at 1 A g-1 ). Furthermore, the assembled asymmetric CCO@N0.5 C0.5 OH/NF//AC/NF supercapacitor demonstrates a high energy density (70.1 Wh kg-1 at 850 W kg-1 ), and maintains robust capacitance cycling stability performance (83.7%) after undergoing 10 000 successive charges and discharges. It is noteworthy that the assembled supercapacitor exhibits an operating voltage (1.7 V) that is well above the theoretical value (1.5 V).

10.
Small ; 20(23): e2309814, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38155521

ABSTRACT

Active compounds based on LDH (ternary layered double hydroxide) are considered the perfect supercapacitor electrode materials on account of their superior electrochemical qualities and distinct structural characteristics, and flexible supercapacitors are an ideal option as an energy source for wearable electronics. However, the prevalent aggregation effect of LDH materials results in significantly compromised actual specific capacitance, which limits its broad practical applications. In this research, a 3D eggshell-like interconnected porous carbon (IPC) framework with confinement and isolation capability is designed and synthesized by using glucose as the carbon source to disperse the LDH active material and enhance the conductivity of the composite material. Second, by constructing NiCoMn-LDH nanocage structure based on ZIF-67 (zeolitic imidazolate framework-67) at the nanometer scale the obtained IPC/NiCoMn-LDH electrode material can expose more active sites, which allows to achieve excellent specific capacitance (2236 F g-1/ 310.6 mAh g-1 at 1 A g-1), good rate as well as the desired cycle stability (85.9% of the initial capacitance upon 5000 cycles test). The constructed IPC/NiCoMn-LDH//IPC ASC (asymmetric supercapacitor) exhibits superior capacitive property (135 F g-1/60.1 mAh g-1 at 0.5 A g-1) as well as desired energy density (40 Wh kg-1 at 800 W kg-1).

11.
J Hazard Mater ; 464: 132953, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37952334

ABSTRACT

Selenium (Se) can be absorbed by plants, thereby affects plant physiological activity, interferes gene expression, alters metabolite content and influences plant growth. However, the molecular mechanism underlying the plant response to Se remains unclear. In this study, apple plants were exposed to Se at concentrations of 0, 3, 6, 9, 12, 24, and 48 µM. Low concentrations of Se promoted plant growth, while high Se concentrations (≥24 µM) reduced photosynthesis, disturbed carbon and nitrogen metabolism, damaged the antioxidant system, and ultimately inhibited plant growth. The transcriptome and metabolome revealed that Se mainly affected three pathways, namely the 'biosynthesis of amino acids', 'starch and sucrose metabolism', and 'phenylpropanoid biosynthesis' pathways. 9 µM Se improved the synthesis, catabolism and utilization of amino acids and sugars, ultimately promoted plant growth. However, 24 µM Se up-regulated the related genes expression of PK, GPT, P5CS, SUS, SPS and CYP98A, and accumulated a large number of osmoregulation substances, such as citric acid, L-proline, D-sucrose and chlorogenic acid in the roots, ultimately affected the balance between plant growth and defense. In conclusion, this study reveals new insights into the key metabolic pathway in apple plants responses to Se.


Subject(s)
Malus , Selenium , Selenium/metabolism , Transcriptome , Metabolic Networks and Pathways/genetics , Amino Acids/metabolism , Sucrose , Gene Expression Regulation, Plant
12.
ACS Nano ; 17(22): 22277-22286, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37930063

ABSTRACT

Perioperative cerebral hypoxia and neonatal hypoxia-ischemic encephalopathy are the main triggers that lead to temporary or permanent brain dysfunction. The pathogenesis is intimately correlated to neural activities and the pH of the microenvironment, which calls for a high demand for in situ multitype physiological signal acquisition in the brain. However, conventional pH sensing neural interfaces cannot obtain the characteristics of multimodes, multichannels, and high spatial resolution of physiological signals simultaneously. Here, we report a multifunctional implantable iridium oxide (IrOx) neural probe (MIIONP) combined with electrophysiology recording, in situ pH sensing, and neural stimulation for real-time dynamic brain hypoxia evaluation. The neural probe modified with IrOx films exhibits outstanding electrophysiology recording and neural stimulation performance and long-term stable high spatial pH sensing resolution of about 100 µm, and the cytotoxicity of IrOx microelectrodes was investigated as well. In addition, 4 weeks' tracking of the same neuron firing and instantaneous population spike captured during electrical stimulation was achieved by MIIONP. Finally, in a mouse brain hypoxia model, the MIIONP has demonstrated the capability of synchronous in situ recording of the pH and neural firing changes in the brain, which has a valuable application in dynamic brain disease evaluation through real-time acquisition of multiple physiological signals.


Subject(s)
Brain Diseases , Hypoxia, Brain , Mice , Animals , Microelectrodes , Prostheses and Implants , Iridium , Hypoxia, Brain/diagnostic imaging
14.
BMC Infect Dis ; 23(1): 709, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864200

ABSTRACT

BACKGROUND: The rapid global emergence and spread of carbapenem-resistant Gram-negative bacilli (CR-GNB) is recognized as a major public health concern, and there are currently few effective treatments for CR-GNB infection. The aim of this study was to investigate the clinical characteristics and outcomes of patients with CR-GNB infections treated with ceftazidime/avibactam (CAZ/AVI) combined with colistin from October 2019 to February 2023 in China. METHODS: A total of 31 patients with CR-GNB infections were retrospectively identified using the electronic medical record system of Zhejiang Provincial People's Hospital. RESULTS: Thirty-one patients were treated with CAZ/AVI combined with colistin. Respiratory tract infections (87%) were most common. The common drug-resistant bacteria encompass Klebsiella pneumonia (54.8%), Acinetobacter baumannii (29.0%), and Pseudomonas aeruginosa (16.1%). The 30-day mortality rate was 29.0%, and the 7-day microbial clearance rate was 64.5%. The inflammatory marker CRP changes, but not PCT and WBC, were statistically significant on days 7 and 14 after combination therapy. There were seven patients developing acute renal injury (AKI) after combination therapy and treating with continuous renal replacement therapy (CRRT). Two patients developed diarrhea. CONCLUSION: The combination of CAZ/AVI and colistin has potential efficacy in patients with CR-GNB infection, but more studies are needed to determine whether it can reduce 30-day mortality rates and increase 7-day microbial clearance. At the same time, the adverse reactions of combination therapy should not be ignored.


Subject(s)
Ceftazidime , Colistin , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Colistin/therapeutic use , Colistin/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Gram-Negative Bacteria
15.
Microsyst Nanoeng ; 9: 126, 2023.
Article in English | MEDLINE | ID: mdl-37829160

ABSTRACT

Bacterial cellulose (BC), a natural biomaterial synthesized by bacteria, has a unique structure of a cellulose nanofiber-weaved three-dimensional reticulated network. BC films can be ultrasoft with sufficient mechanical strength, strong water absorption and moisture retention and have been widely used in facial masks. These films have the potential to be applied to implantable neural interfaces due to their conformality and moisture, which are two critical issues for traditional polymer or silicone electrodes. In this work, we propose a micro-electrocorticography (micro-ECoG) electrode named "Brainmask", which comprises a BC film as the substrate and separated multichannel parylene-C microelectrodes bonded on the top surface. Brainmask can not only guarantee the precise position of microelectrode sites attached to any nonplanar epidural surface but also improve the long-lasting signal quality during acute implantation with an exposed cranial window for at least one hour, as well as the in vivo recording validated for one week. This novel ultrasoft and moist device stands as a next-generation neural interface regardless of complex surface or time of duration.

16.
Exp Cell Res ; 433(1): 113804, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37806378

ABSTRACT

Alcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1KO) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response. Adh1KO mice develop more severe tubular cell apoptosis in comparison to Adh1 wild-type (Adh1WT) mice during course of lethal endotoxemia. ADH1 deficiency facilitates the LPS-induced tubular cell apoptosis in a caspase-dependent manner. Mechanistically, ADH1 deficiency dampens tubular mitophagy that relies on PINK1-Parkin pathway characterized by the reduced membrane potential, reactive oxygen species (ROS) and release of fragmented mtDNA to cytosol. Kidney-specific overexpression of PINK1 and Parkin by adeno-associated viral vector 9 (AAV9) delivery ameliorates AKI exacerbation in Adh1KO mice with lethal endotoxemia. Our study supports the notion that ADH1 is critical for blockade of tubular apoptosis mediated by mitophagy, allowing the rapid identification and targeting of alcohol-metabolic route applicable to septic AKI.

17.
Dalton Trans ; 52(41): 14973-14981, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37807879

ABSTRACT

To replace the current expensive precious metal catalysts for water electrolysis, it is important to develop inexpensive and powerful bifunctional catalysts for hydrogen production. It is an effective way to improve catalytic performance using excellent templates and elemental doping. Here, a hierarchical structure Fe-Co3S4/MoS2 was synthesized using an Fe-ZIF precursor prepared by ion exchange, followed by hydrothermal sulfuration and annealing. It required overpotentials of only 93 mV and 243 mV to achieve a current density of 10 mA cm-2 in the HER and OER, respectively. It also showed excellent catalytic performance for overall water splitting, requiring only 1.42 and 1.71 V to achieve current densities of 10 and 100 mA cm-2 in 1 M KOH. The catalyst also demonstrated excellent ultra-long-term stability. The superb catalytic performance and stability can be attributed to the Fe doping, exposing more active sites while retaining the highly stable framework of the ZIF. The component modulation of Co3S4 and MoS2 by Fe doping induced high intrinsic activity and excellent transfer coefficients. This work presents a novel approach to prepare noble metal-free catalysts with highly stable rich interfaces and defects for overall water splitting.

18.
Langmuir ; 39(38): 13571-13578, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37696114

ABSTRACT

Occlusal force is an important parameter for evaluating the function of the occlusal system. Traditional occlusal forces can only be measured qualitatively. Here, we report a flexible piezoresistive pressure sensor with high sensitivity and a wide measurement range for in situ occlusal force measurements through the articulating paper. The sensing layer of the flexible piezoresistive sensor is a 3D porous MXene composite aerogel, which is fabricated by vacuum freezing. The MXene piezoresistive sensor is composed of the interdigital electrodes, the sensing layer, the PI encapsulation layer, and an articulating paper encapsulation layer. The sensor shows perfect performance with high sensitivity (210.21 kPa-1), wide measurement range (∼420 kPa), and a fast response time (123 ms response time, 163 ms recovery time). The amplitude of the occlusal force, which varied with time, can be observed on the mobile phone through the wireless system with the Bluetooth module. This technique has broad application prospects in oral health. In this work, we propose a simple method and a new idea for manufacturing high-performance wearable bioelectronic sensors.


Subject(s)
Bite Force , Titanium , Electrodes , Porosity
19.
Oncol Lett ; 26(4): 431, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37664651

ABSTRACT

The incidence rate of thyroid cancer is rising rapidly in numerous parts of the world, but the mortality rate is relatively stable or even declining. The aim of the present study was to analyze the risk factors of cervical lymph node metastasis (LNM) in differentiated thyroid carcinoma (DTC). The clinical data of 846 patients with DTC were collected from the Department of General Surgery of Chifeng Municipal Hospital of Inner Mongolia Medical University (Chifeng, China) from June 2018 to June 2022. The relationship between central LNM (CLNM) and lateral LNM (LLNM) was explored in terms of sex, age, tumor diameter, multifocality, capsular invasion and Hashimoto's thyroiditis. It was revealed that male sex, age <35 years, tumor size >1 cm, multifocality and capsular invasion were associated with CLNM and LLNM (P<0.001), while there was no relationship between Hashimoto's thyroiditis, CLNM and LLNM (P>0.05). The number of positive lymph nodes in CLNM dissection, accounting for ≥50% of the total number of lymph nodes dissected, was significantly associated with LLNM (P<0.0001). In conclusion, there was no correlation between Hashimoto's thyroiditis and CLNM and LLNM. The present study revealed that patients with the characteristics of sex, age <35 years, tumor size >1 cm, multifocality and capsular invasion were associated with cervical LNM. The proportion of the number of central lymph node metastases to the total number of lymph nodes cleared during surgery is more than or equal to 50%, indicating a susceptibility to external cervical lymph node metastasis. The results of multivariate logistic analysis showed that male sex, multifocality, capsular invasion and CLNM were risk factors for LLNM, and age was a protective factor for LLNM in DTC.

20.
Sensors (Basel) ; 23(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765945

ABSTRACT

In this paper, we present a soft and moisturizing film electrode based on bacterial cellulose and Ag/AgCl conductive cloth as a potential replacement for gel electrode patches in electroencephalogram (EEG) recording. The electrode materials are entirely flexible, and the bacterial cellulose membrane facilitates convenient adherence to the skin. EEG signals are transmitted from the skin to the bacterial cellulose first and then transferred to the Ag/AgCl conductive cloth connected to the amplifier. The water in the bacterial cellulose moisturizes the skin continuously, reducing the contact impedance to less than 10 kΩ, which is lower than commercial gel electrode patches. The contact impedance and equivalent circuits indicate that the bacterial cellulose electrode effectively reduces skin impedance. Moreover, the bacterial cellulose electrode exhibits lower noise than the gel electrode patch. The bacterial cellulose electrode has demonstrated success in collecting α rhythms. When recording EEG signals, the bacterial cellulose electrode and gel electrode have an average coherence of 0.86, indicating that they have similar performance across different EEG bands. Compared with current mainstream conductive rubber dry electrodes, gel electrodes, and conductive cloth electrodes, the bacterial cellulose electrode has obvious advantages in terms of contact impedance. The bacterial cellulose electrode does not cause skin discomfort after long-term recording, making it more suitable for applications with strict requirements for skin affinity than gel electrode patches.


Subject(s)
Cellulose , Forehead , Electroencephalography , Electric Conductivity , Electric Impedance , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...