Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJR Am J Roentgenol ; 219(5): 703-712, 2022 11.
Article in English | MEDLINE | ID: mdl-35544377

ABSTRACT

Interest in artificial intelligence (AI) applications for lung nodules continues to grow among radiologists, particularly with the expanding eligibility criteria and clinical utilization of lung cancer screening CT. AI has been heavily investigated for detecting and characterizing lung nodules and for guiding prognostic assessment. AI tools have also been used for image postprocessing (e.g., rib suppression on radiography or vessel suppression on CT) and for noninterpretive aspects of reporting and workflow, including management of nodule follow-up. Despite growing interest in and rapid development of AI tools and FDA approval of AI tools for pulmonary nodule evaluation, integration into clinical practice has been limited. Challenges to clinical adoption have included concerns about generalizability, regulatory issues, technical hurdles in implementation, and human skepticism. Further validation of AI tools for clinical use and demonstration of benefit in terms of patient-oriented outcomes also are needed. This article provides an overview of potential applications of AI tools in the imaging evaluation of lung nodules and discusses the challenges faced by practices interested in clinical implementation of such tools.


Subject(s)
Artificial Intelligence , Lung Neoplasms , Humans , Early Detection of Cancer , Lung Neoplasms/diagnostic imaging , Radiologists , Lung
2.
J Vis Exp ; (88): e51745, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24998993

ABSTRACT

Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.


Subject(s)
Equipment and Supplies , Printing, Three-Dimensional , Computer-Aided Design , Equipment and Supplies/economics , Female , Humans , Printing, Three-Dimensional/economics , Silicone Elastomers/chemistry , Vagina
3.
IEEE Trans Biomed Eng ; 60(12): 3484-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23893706

ABSTRACT

Preterm birth causes 1 million infant deaths worldwide every year, making it the leading cause of infant mortality. Existing diagnostic tests such as transvaginal ultrasound or fetal fibronectin either cannot determine if preterm birth will occur in the future or can only predict the occurrence once cervical shortening has begun, at which point it is too late to reverse the accelerated parturition process. Using iterative and rapid prototyping techniques, we have developed an intravaginal proof-of-concept device that measures both cervical bioimpedance and cervical fluorescence to characterize microstructural changes in a pregnant woman's cervix in hopes of detecting preterm birth before macroscopic changes manifest in the tissue. If successful, such an early alert during this "silent phase" of the preterm birth syndrome may open a new window of opportunity for interventions that may reverse and avoid preterm birth altogether.


Subject(s)
Cervical Ripening/physiology , Cervix Uteri/physiology , Optical Imaging/methods , Premature Birth/diagnosis , Early Diagnosis , Electric Impedance , Female , Humans , Pregnancy , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...