Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 22(10): 1439-1451, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32328646

ABSTRACT

BACKGROUND: Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (Sp1) transcription factor is known to protect glioblastoma cells against temozolomide; however, how tumor cells hijack this factor to gain resistance to therapy is not known. METHODS: Sp1 acetylation in temozolomide-resistant cells and stemlike tumorspheres was analyzed by immunoprecipitation and immunoblotting experiments. Effects of the histone deacetylase (HDAC)/Sp1 axis on malignant growth were examined using cell proliferation-related assays and in vivo experiments. Furthermore, integrative analysis of gene expression with chromatin immunoprecipitation sequencing and the recurrent glioblastoma omics data were also used to further determine the target genes of the HDAC/Sp1 axis. RESULTS: We identified Sp1 as a novel substrate of HDAC6, and observed that the HDAC1/2/6/Sp1 pathway promotes self-renewal of malignancy by upregulating B cell-specific Mo-MLV integration site 1 (BMI1) and human telomerase reverse transcriptase (hTERT), as well as by regulating G2/M progression and DNA repair via alteration of the transcription of various genes. Importantly, HDAC1/2/6/Sp1 activation is associated with poor clinical outcome in both glioblastoma and low-grade gliomas. However, treatment with azaindolyl sulfonamide, a potent HDAC6 inhibitor with partial efficacy against HDAC1/2, induced G2/M arrest and senescence in both temozolomide-resistant cells and stemlike tumorspheres. CONCLUSION: Our study uncovers a previously unknown regulatory mechanism in which the HDAC6/Sp1 axis induces cell division and maintains the stem cell population to fuel tumor growth and therapeutic resistance.


Subject(s)
Glioblastoma , Apoptosis , Cell Line, Tumor , Drug Resistance, Neoplasm , G2 Phase Cell Cycle Checkpoints , Glioblastoma/drug therapy , Glioblastoma/genetics , Histone Deacetylase 1/genetics , Humans , Sp1 Transcription Factor/genetics
2.
J Biomed Sci ; 26(1): 77, 2019 Oct 19.
Article in English | MEDLINE | ID: mdl-31629402

ABSTRACT

BACKGROUND: Intratumor subsets with tumor-initiating features in glioblastoma are likely to survive treatment. Our goal is to identify the key factor in the process by which cells develop temozolomide (TMZ) resistance. METHODS: Resistant cell lines derived from U87MG and A172 were established through long-term co-incubation of TMZ. Primary tumors obtained from patients were maintained as patient-derived xenograft for studies of tumor-initating cell (TIC) features. The cell manifestations were assessed in the gene modulated cells for relevance to drug resistance. RESULTS: Among the mitochondria-related genes in the gene expression databases, superoxide dismutase 2 (SOD2) was a significant factor in resistance and patient survival. SOD2 in the resistant cells functionally determined the cell fate by limiting TMZ-stimulated superoxide reaction and cleavage of caspase-3. Genetic inhibition of the protein led to retrieval of drug effect in mouse study. SOD2 was also associated with the TIC features, which enriched in the resistant cells. The CD133+ specific subsets in the resistant cells exhibited superior superoxide regulation and the SOD2-related caspase-3 reaction. Experiments applying SOD2 modulation showed a positive correlation between the TIC features and the protein expression. Finally, co-treatment with TMZ and the SOD inhibitor sodium diethyldithiocarbamate trihydrate in xenograft mouse models with the TMZ-resistant primary tumor resulted in lower tumor proliferation, longer survival, and less CD133, Bmi-1, and SOD2 expression. CONCLUSION: SOD2 plays crucial roles in the tumor-initiating features that are related to TMZ resistance. Inhibition of the protein is a potential therapeutic strategy that can be used to enhance the effects of chemotherapy.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Neoplastic Stem Cells/drug effects , Superoxide Dismutase/administration & dosage , Temozolomide/pharmacology , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Heterografts/physiopathology , Humans , Mice , Neoplastic Stem Cells/physiology
3.
Biochem Biophys Res Commun ; 493(1): 14-19, 2017 11 04.
Article in English | MEDLINE | ID: mdl-28939040

ABSTRACT

It has been suggested that stress stimuli from the microenvironment maintain a subset of tumor cells with stem-like properties, including drug resistance. Here, we investigate whether Sp1, a stress-responsive factor, regulates stemness gene expression and if its inhibition sensitizes cancer cells to chemotherapy. Hydrogen peroxide- and serum deprivation-induced stresses were performed in glioblastoma (GBM) cells and patient-derived cells, and the effect of the Sp1 inhibitor mithramycin A (MA) on these stress-induced stem cells and temozolomide (TMZ)-resistant cells was evaluated. Sp1 and stemness genes were not commonly overexpressed in clinical GBM samples. However, their expression was highly induced by stress stimuli. Using MA, we demonstrated Sp1 as a critical stemness-related transcriptional factor protecting GBM cells against stress- and TMZ-induced death. Thus, Sp1 inhibition may prevent recurrence of malignant cells persisting after primary therapy.


Subject(s)
Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , Glioblastoma/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Sp1 Transcription Factor/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/pathology , Humans , Male , Mice , Mice, SCID , Neoplastic Stem Cells/pathology , Oxidative Stress/drug effects , Temozolomide , Treatment Outcome
4.
Redox Biol ; 13: 655-664, 2017 10.
Article in English | MEDLINE | ID: mdl-28822335

ABSTRACT

Acquisition of temozolomide (TMZ) resistance is a major factor leading to the failure of glioblastoma (GBM) treatment. The exact mechanism by which GBM evades TMZ toxicity is not always related to the expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT), and so remains unclear. In this study, TMZ-resistant variants derived from MGMT-negative GBM clinical samples and cell lines were studied, revealing there to be increased specificity protein 1 (Sp1) expression associated with reduced reactive oxygen species (ROS) accumulation following TMZ treatment. Analysis of gene expression databases along with cell studies identified the ROS scavenger superoxide dismutase 2 (SOD2) as being disease-related. SOD2 expression was also increased, and it was found to be co-expressed with Sp1 in TMZ-resistant cells. Investigation of the SOD2 promoter revealed Sp1 as a critical transcriptional activator that enhances SOD2 gene expression. Co-treatment with an Sp1 inhibitor restored the inhibitory effects of TMZ, and decreased SOD2 levels in TMZ-resistant cells. This treatment strategy restored susceptibility to TMZ in xenograft animals, leading to prolonged survival in an orthotopic model. Thus, our results suggest that Sp1 modulates ROS scavengers as a novel mechanism to increase cancer malignancy and resistance to chemotherapy. Inhibition of this pathway may represent a potential therapeutic target for restoring treatment susceptibility in GBM.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/metabolism , Dacarbazine/analogs & derivatives , Drug Resistance, Neoplasm , Glioblastoma/metabolism , Superoxide Dismutase/metabolism , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Cell Line, Tumor , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Glioblastoma/drug therapy , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Reactive Oxygen Species/metabolism , Sp1 Transcription Factor/metabolism , Superoxide Dismutase/genetics , Temozolomide , Tumor Suppressor Proteins/metabolism
5.
J Biomed Sci ; 23(1): 81, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27863490

ABSTRACT

BACKGROUND: Glioma stem-like cells (GSCs) are proposed to be responsible for high resistance in glioblastoma multiforme (GBM) treatment. In order to find new strategies aimed at reducing GSC stemness and improving GBM patient survival, we investigated the effects and mechanism of a histone deacetylases (HDACs) inhibitor, suberoylanilide hydroxamic acid (SAHA), since HDAC activity has been linked to cancer stem-like cell (CSC) abundance and properties. METHODS: Human GBM cell lines were plated in serum-free suspension cultures allowed for sphere forming and CSC enrichment. Subsequently, upon SAHA treatment, the stemness markers, cell proliferation, and viability of GSCs as well as cellular apoptosis and senescence were examined in order to clarify whether inhibition of GSCs occurs. RESULTS: We demonstrated that SAHA attenuated cell proliferation and diminished the expression stemness-related markers (CD133 and Bmi1) in GSCs. Furthermore, at high concentrations (more than 5 µM), SAHA triggered apoptosis of GSCs accompanied by increases in both activation of caspase 8- and caspase 9-mediated pathways. Interestingly, we found that a lower dose of SAHA (1 µM and 2.5 µM) inhibited GSCs via cell cycle arrest and induced premature senescence through p53 up-regulation and p38 activation. CONCLUSION: SAHA induces apoptosis and functions as a potent modulator of senescence via the p38-p53 pathway in GSCs. Our results provide a perspective on targeting GSCs via SAHA treatment, and suggest that SAHA could be used as a potent agent to overcome drug resistance in GBM patients.


Subject(s)
Glioblastoma/drug therapy , Glioma/drug therapy , Histone Deacetylase Inhibitors/administration & dosage , Hydroxamic Acids/administration & dosage , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/enzymology , Glioma/genetics , Glioma/pathology , Histone Deacetylases/biosynthesis , Histone Deacetylases/genetics , Humans , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Signal Transduction , Tumor Suppressor Protein p53/genetics , Vorinostat , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...