Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6935, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117211

ABSTRACT

Electrical data could be a new source of big-data for training artificial intelligence (AI) for drug discovery. A Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD) was built using a standardized methodology to test drug effects on electrical gastrointestinal (GI) pacemaker activity. The current report used data obtained from 89 drugs with 4867 datasets to evaluate the potential use of the GIPADD for predicting drug adverse effects (AEs) using a machine-learning (ML) approach and to explore correlations between AEs and GI pacemaker activity. Twenty-four "electrical" features (EFs) were extracted using an automated analytical pipeline from the electrical signals recorded before and after acute drug treatment at three concentrations (or more) on four-types of GI tissues (stomach, duodenum, ileum and colon). Extracted features were normalized and merged with an online side-effect resource (SIDER) database. Sixty-six common AEs were selected. Different algorithms of classification ML models, including Naïve Bayes, discriminant analysis, classification tree, k-nearest neighbors, support vector machine and an ensemble model were tested. Separated tissue models were also tested. Averaging experimental repeats and dose adjustment were performed to refine the prediction results. Random datasets were created for model validation. After model validation, nine AEs classification ML model were constructed with accuracy ranging from 67 to 80%. EF can be further grouped into 'excitatory' and 'inhibitory' types of AEs. This is the first time drugs are being clustered based on EF. Drugs acting on similar receptors share similar EF profile, indicating potential use of the database to predict drug targets too. GIPADD is a growing database, where prediction accuracy is expected to improve. The current approach provides novel insights on how EF may be used as new source of big-data in health and disease.


Subject(s)
Artificial Intelligence , Drug-Related Side Effects and Adverse Reactions , Humans , Databases, Pharmaceutical , Bayes Theorem , Algorithms , Machine Learning
2.
Front Pharmacol ; 13: 858522, 2022.
Article in English | MEDLINE | ID: mdl-35462894

ABSTRACT

Nesfatin-1 is an anorectic peptide expressed in both peripheral tissues and brain areas involved in the regulation of feeding, emotion and emesis. The aim of the present study is to characterize the distribution of NUCB2/nesfatin-1 in Suncus murinus and to investigate the actions of nesfatin-1 to affect gastrointestinal contractility, emesis, food and water intake, and locomotor activity. The deduced amino acid sequence of S. murinus nesfatin-1 using in silico cloning showed high homology with humans and rodents. NUCB2 mRNA was detected throughout the entire brain and in the gastrointestinal tract, including the stomach and gut. Western blot analysis and immunohistochemistry confirmed the expression of nesfatin-1 protein in these regions. The NUCB2 mRNA levels in the hypothalamus, hippocampus and brainstem were significantly decreased, whereas that in the striatum were increased after 24 h starvation compared to ad libitum-fed animals (p < 0.05). In in vitro studies, nesfatin-1 (0.3-1,000 pM) failed to contract or relax the isolated gastric antrum and intestinal segments. In conscious, freely moving animals, intracerebroventricular administration of nesfatin-1 (1-50 pmol) induced emesis (p < 0.05) and suppressed 6-h cumulative food intake (p < 0.05), without affecting the latency to feeding. Nesfatin-1 (25 pmol, i.c.v.) decreased 24-h cumulative food and water intake by 28.3 and 35.4%, respectively (p < 0.01). No significant differences in locomotor activity were observed. In conclusion, NUCB2/nesfatin-1 might be a potent regulator of feeding and emesis in S. murinus. Further studies are required to elucidate the mechanism of actions of this peptide as a mediator linking the brainstem NUCB2/nesfatin-1 to forebrain system.

3.
J Physiol ; 598(19): 4209-4223, 2020 10.
Article in English | MEDLINE | ID: mdl-32617993

ABSTRACT

KEY POINTS: Alzheimer's disease (AD) patients and transgenic mice have beta-amyloid (Aß) aggregation in the gastrointestinal (GI) tract. It is possible that Aß from the periphery contributes to the load of Aß in the brain, as Aß has prion-like properties. The present investigations demonstrate that Aß injected into the GI tract of ICR mice is internalised into enteric cholinergic neurons; at 1 month, administration of Aß into the body of the stomach and the proximal colon was observed to partly redistribute to the fundus and jejunum; at 1 year, vagal and cerebral ß-amyloidosis was present, and mice exhibited GI dysfunction and cognitive deficits. These data reveal a previously undiscovered mechanism that potentially contributes to the development of AD. ABSTRACT: Alzheimer's disease (AD) is the most common age-related cause of dementia, characterised by extracellular beta-amyloid (Aß) plaques and intracellular phosphorylated tau tangles in the brain. Aß deposits have also been observed in the gastrointestinal (GI) tract of AD patients and transgenic mice, with overexpression of amyloid precursor protein. In the present studies, we investigate whether intra-GI administration of Aß can potentially induce amyloidosis in the central nervous system (CNS) and AD-related pathology such as dementia. We micro-injected Aß1-42 oligomers (4 µg per site, five sites) or vehicle (saline, 5 µl) into the gastric wall of ICR mice under general anaesthesia. Immunofluorescence staining and in vivo imaging showed that HiLyte Fluor 555-labelled Aß1-42 had migrated within 3 h via the submucosa to nearby areas and was internalised into cholinergic neurons. At 1 month, HiLyte Fluor 555-labelled Aß1-42 in the body of the stomach and proximal colon had partly re-distributed to the fundus and jejunum. At 1 year, the jejunum showed functional alterations in neuromuscular coupling (P < 0.001), and Aß deposits were present in the vagus and brain, with animals exhibiting cognitive impairments in the Y-maze spontaneous alteration test (P < 0.001) and the novel object recognition test (P < 0.001). We found that enteric Aß oligomers induce an alteration in gastric function, amyloidosis in the CNS, and AD-like dementia via vagal mechanisms. Our results suggest that Aß load is likely to occur initially in the GI tract and may translocate to the brain, opening the possibility of new strategies for the early diagnosis and prevention of AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Gastrointestinal Tract/metabolism , Humans , Mice , Mice, Inbred ICR , Mice, Transgenic
4.
Am J Physiol Gastrointest Liver Physiol ; 319(1): G97-G107, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32475128

ABSTRACT

The effect of acetylcholine (ACh) on pacemaking and spontaneous contractions in the gastrointestinal tract is not well characterized. The current study aims to profile the effect of several muscarinic and nicotinic receptor agonists and antagonists on pacemaker potentials in the ICR mouse ileum. Pacemaker potentials of whole thickness mouse ileal segments were recorded extracellularly using a 60-channel microelectrode array (MEA) platform. A spatiotemporal analysis integrated the frequency, amplitude, and velocity measurements of pacemaker currents. Comparative data were obtained by recording spontaneous smooth muscle tone in a conventional organ bath. On the MEA, ACh (0.3-300 µM) and bethanechol (0.3-300 µM) significantly reduced ileal pacemaker potentials. The inhibitory effect of ACh was mimicked by donepezil (300 µM) but not nicotine (0.3-7 mM). Atropine (300 µM), but not hexamethonium (300 µM), reversed the inhibitory actions of ACh and bethanechol and revealed excitatory properties manifested as increases in pacemaker frequency. A spatial analysis also revealed that atropine, but not hexamethonium, reversed the ACh-induced distortion of pacemaker propagation activity. Atropine (0.001-3 mM) and hexamethonium (0.3-7 mM) alone were inactive. In the organ bath, ACh (300 nM) and bethanechol (30 µM) induced ileal tonic contractions, while inhibiting basal spontaneous contractions at 300 µM. Atropine (1 µM), but not hexamethonium (1-300 µM), reversed both the tonic contractions and the inhibition of the spontaneous contractions of ACh and bethanechol and revealed an excitatory effect manifested as an increasing in the frequency of contractions. Muscarinic, but not nicotinic, receptors appear to mediate the inhibitory actions of ACh on mouse ileal pacemaker potentials.NEW & NOTEWORTHY The study discovered an acute action of acetylcholine on pacemaker potentials that is mediated by muscarinic receptors on the mouse ileum. Bethanechol, but not nicotine, mimicked the inhibitory actions of acetylcholine on pacemaker potentials. Atropine, but not hexamethonium, reversed the inhibitory actions of acetylcholine. When introduced after acetylcholine, atropine exhibited excitatory actions that increased the pacemaker frequency. Acetylcholine and bethanechol distorted the propagation activity and pattern, and this was also reversed by atropine. These actions of acetylcholine on pacemaker potentials may contribute to pathophysiology in bowel diseases.


Subject(s)
Acetylcholine/pharmacology , Muscarinic Antagonists/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Animals , Cholinergic Agents/pharmacology , Hexamethonium/pharmacology , Mice , Receptors, Nicotinic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...