Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Small ; : e2400661, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597688

ABSTRACT

Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.

2.
Adv Mater ; 36(23): e2402071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382487

ABSTRACT

Photocatalytic reduction of CO2 to energy carriers is intriguing in the industry but kinetically hard to fulfil due to the lack of rationally designed catalysts. A promising way to improve the efficiency and selectivity of such reduction is to break the structural symmetry of catalysts by manipulating coordination. Here, inspired by analogous CoO6 and CoSe6 octahedral structural motifs of the Co(OH)2 and CoSe, a hetero-anionic coordination strategy is proposed to construct a symmetry-breaking photocatalyst prototype of oxygen-deficient Se-doped cobalt hydroxide upon first-principles calculations. Such involvement of large-size Se atoms in CoO6 octahedral frameworks experimentally lead to the switching of semiconductor type of cobalt hydroxide from p to n, generation of oxygen defects, and amorphization. The resultant oxygen-deficient Se,O-coordinated Co-based amorphous nanosheets exhibit impressive photocatalytic performance of CO2 to CO with a generation rate of 60.7 µmol g-1 h-1 in the absence of photosensitizer and scavenger, superior to most of the Co-based photocatalysts. This work establishes a correlation between the symmetry-breaking of catalytic sites and CO2 photoreduction performances, opening up a new paradigm in the design of amorphous photocatalysts for CO2 reduction.

3.
J Colloid Interface Sci ; 629(Pt B): 871-877, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36202030

ABSTRACT

Photoreduction of CO2 to value-added chemicals and fuels is an attractive solution to alleviate environmental problems and energy crisis at the same time. However, engineering efficient photocatalysts with high activity and product selectivity is still challenging. Herein, we achieved three-dimensional (3D) spatial configuration design at micro-scale and heterogeneous interface construction at nano-scale on a SnS2/SnO2 composite, which featured hierarchical flower-like morphology consisted of nanosheets and type-II semiconductor structure. It behaved excellent selectivity and impressive photocatalytic CO2-to-CO performance with a yielding rate of 60.85 µmol g-1h-1, roughly 3 times higher than that of SnS2 and was in the front rank of this kind catalysts under 300 W Xe lamp illumination without using any sensitizers or noble metals. The enhanced catalytic capability could be attributed to the elaborately built structure with suitable energetic position that afforded effective separation and migration of photo-generated electron/hole pairs as well as enhanced light caption and absorption. Meanwhile, main reactive intermediates (e.g., CO2- and *COOH) were captured by in-situ Fourier transform infrared spectroscopy (FTIR), suggesting a fluent catalytic pathway on the SnS2/SnO2 platform. This work provides a new scheme to build advanced catalysts based on multiscale design and rational phase assembling.

4.
Nanomaterials (Basel) ; 11(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34947594

ABSTRACT

Low-carbon society is calling for advanced electrochemical energy storage and conversion systems and techniques, in which functional electrode materials are a core factor. As a new member of the material family, two-dimensional amorphous nanomaterials (2D ANMs) are booming gradually and show promising application prospects in electrochemical fields for extended specific surface area, abundant active sites, tunable electron states, and faster ion transport capacity. Specifically, their flexible structures provide significant adjustment room that allows readily and desirable modification. Recent advances have witnessed omnifarious manipulation means on 2D ANMs for enhanced electrochemical performance. Here, this review is devoted to collecting and summarizing the manipulation strategies of 2D ANMs in terms of component interaction and geometric configuration design, expecting to promote the controllable development of such a new class of nanomaterial. Our view covers the 2D ANMs applied in electrochemical fields, including battery, supercapacitor, and electrocatalysis, meanwhile we also clarify the relationship between manipulation manner and beneficial effect on electrochemical properties. Finally, we conclude the review with our personal insights and provide an outlook for more effective manipulation ways on functional and practical 2D ANMs.

5.
J Am Chem Soc ; 143(35): 14169-14177, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34449218

ABSTRACT

Developing a reliable strategy for the modulation of the texture, composition, and electronic structure of electrocatalyst surfaces is crucial for electrocatalytic performance, yet still challenging. Herein, we develop a facile and universal strategy, quenching, to precisely tailor the surface chemistry of metal oxide nanocatalysts by rapidly cooling them in a salt solution. Taking NiMoO4 nanocatalysts an example, we successfully produce the quenched nanocatalysts offering a greatly reduced oxygen evolution reaction (OER) overpotential by 85 mV and 135 mV at 10 mA cm-2 and 100 mA cm-2 respectively. Through detailed characterization studies, we establish that quenching induces the formation of numerous disordered stepped surfaces and the near-surface metal ions doping, thus regulating the local electronic structures and coordination environments of Ni, Mo, which promotes the formation of the dual-site active and thereby affords a low energy pathway for OER. This quenching strategy is also successfully applied to a number of other metal oxides, such as spinel-type Co3O4, Fe2O3, LaMnO3, and CoSnO3, with similar surface modifications and gains in OER activity. Our finding provides a new inspiration to activate metal oxide catalysts and extends the use of quenching chemistry in catalysis.

6.
Nat Commun ; 12(1): 2167, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33846311

ABSTRACT

Potassium-ion batteries (KIBs) are promising electrochemical energy storage systems because of their low cost and high energy density. However, practical exploitation of KIBs is hampered by the lack of high-performance cathode materials. Here we report a potassium manganese hexacyanoferrate (K2Mn[Fe(CN)6]) material, with a negligible content of defects and water, for efficient high-voltage K-ion storage. When tested in combination with a K metal anode, the K2Mn[Fe(CN)6]-based electrode enables a cell specific energy of 609.7 Wh kg-1 and 80% capacity retention after 7800 cycles. Moreover, a K-ion full-cell consisting of graphite and K2Mn[Fe(CN)6] as anode and cathode active materials, respectively, demonstrates a specific energy of 331.5 Wh kg-1, remarkable rate capability, and negligible capacity decay for 300 cycles. The remarkable electrochemical energy storage performances of the K2Mn[Fe(CN)6] material are attributed to its stable frameworks that benefit from the defect-free structure.

7.
Proc Natl Acad Sci U S A ; 117(36): 21906-21913, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32848064

ABSTRACT

Development of novel and robust oxygen evolution reaction (OER) catalysts with well-modulated atomic and electronic structure remains a challenge. Compared to the well-known metal hydroxides or (oxyhydr)oxides with lamellar structure, delafossites (ABO2) are characterized by alternating layers of A cations and edge-sharing BO2 octahedra, but are rarely used in OER due to their poor electron conductivity and intrinsic activity. Here, we propose a delafossite analog by mutation of metal oxyhydroxide and delafossite based on first-principles calculations. Modulation on the electronic structure due to distortion of the original crystal field of the BO2 layers is calculated to enhance electron conductivity and catalytic activity. Inspired by the theoretical design, we have experimentally realized the delafossite analog by electrochemical self-reconstruction (ECSR). Operando X-ray absorption spectroscopy and other experimental techniques reveal the formation of delafossite analog with Ag intercalated into bimetallic cobalt-iron (oxyhydr)oxide layers from a metastable precursor through amorphization. Benefitting from the featured local electronic and geometric structures, the delafossite analog shows superior OER activity, affording a current density of 10 mA⋅cm-2 at an overpotential of 187 mV and an excellent stability (300 h) in alkaline conditions.

8.
Small ; 15(19): e1805475, 2019 May.
Article in English | MEDLINE | ID: mdl-30977976

ABSTRACT

Improving electro-optic properties is essential for fabricating high-quality liquid crystal displays. Herein, by doping amorphous Mn3 O4 octahedral nanocages (a-Mn3 O4 ONCs) into a nematic liquid crystal (NLC) matrix E7, outstanding electro-optic properties of the blend are successfully obtained. At a doping concentration of 0.03 wt%, the maximum decreases of threshold voltage (Vth ) and saturation voltage (Vsat ) are 34% and 31%, respectively, and the increase of contrast (Con ) is 160%. This remarkable electro-optic activity can be attributed to high-efficiency charge transfer within the a-Mn3 O4 ONCs NLC system, caused by metastable electronic states of a-Mn3 O4 ONCs. To the best of our knowledge, such remarkable decreased electro-optic activity is observed for the first time from doping amorphous semiconductors, which could provide a new pathway to develop excellent energy-saving amorphous materials and improve their potential applications in electro-optical devices.

9.
Small ; 14(17): e1703514, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29611337

ABSTRACT

Structural flexibility can be a desirable trait of an operating catalyst because it adapts itself to a given catalytic process for enhanced activity. Here, amorphous cobalt hydroxide nanocages are demonstrated to be a promising electrocatalyst with an overpotential of 0.28 V at 10 mA cm-2 , far outperforming the crystalline counterparts and being in the top rank of the catalysts of their kind, under the condition of electrocatalytic oxygen evolution reaction. From the direct experimental in situ and ex situ results, this enhanced activity is attributed to its high structural flexibility in terms of 1) facile and holistic transformation into catalytic active phase; 2) hosting oxygen vacancies; and 3) structure self-regulation in a real-time process. Significantly, based on plausible catalytic mechanism and computational simulation results, it is disclosed how this structural flexibility facilitates the kinetics of oxygen evolution reaction. This work deepens the understanding of the structure-activity relationship of the Co-based catalysts in electrochemical catalysis, and it inspires more applications that require flexible structures enabled by such amorphous nanomaterials.

10.
Small ; 12(39): 5442-5448, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27552301

ABSTRACT

Nanoparticle-assembled octahedral Ag nanocages with sharp edges have been successfully synthesized through a Cu2 O-based template-assisted strategy. In the reaction system, Ag nanoparticles can be self-assembled on the surface of Cu2 O octahedrons, which is accomplished by the reduction of Ag+ by NaBH4 in the presence of sodium citrate as a capping agent. The hollow octahedral Ag nanocages are obtained after removing the inner Cu2 O cores with acetic acid. According to the scanning electron microscopy (SEM) and transmission electron microscopy characterization, the Ag nanocages are weaved by small nanoparticles, the rough surfaces are bestrewed with pores and sharp edges. It is found that the pack density of Ag nanoparticles strongly affects the surface enhanced Raman scattering (SERS) activities. The as-prepared 1.05-Ag cages with optimal pack density have suitable interparticle distance and suitable size of pores, which significantly enhance SERS signals. The SERS signals of rhodamine 6G (R6G) molecules can be detected at an ultralow concentration of 10-14 m when 1.05-Ag cages are used as substrates. In addition to sensitivity, 1.05-Ag cages also exhibit good reproducibility. It is expected that the ultrahigh sensitivity will endow the Ag nanocages to become a promising candidate as high-performance SERS-based chemical sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...