Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-27795376

ABSTRACT

The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection.


Subject(s)
Antiviral Agents/pharmacokinetics , Hepacivirus/drug effects , Protease Inhibitors/pharmacokinetics , Simeprevir/pharmacokinetics , Viral Nonstructural Proteins/metabolism , Animals , Antiviral Agents/therapeutic use , Binding Sites , Dogs , Haplorhini , Hepacivirus/enzymology , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Mice , Molecular Structure , Protease Inhibitors/therapeutic use , Rats , Simeprevir/therapeutic use
2.
PLoS Pathog ; 11(6): e1004995, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26098424

ABSTRACT

Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112. ALS-8176 inhibited RSV replication in non-human primates, while ALS-8112 inhibited all strains of RSV in vitro and was specific for paramyxoviruses and rhabdoviruses. The antiviral effect of ALS-8112 was mediated by the intracellular formation of its 5'-triphosphate metabolite (ALS-8112-TP) inhibiting the viral RNA polymerase. ALS-8112 selected for resistance-associated mutations within the region of the L gene of RSV encoding the RNA polymerase. In biochemical assays, ALS-8112-TP was efficiently recognized by the recombinant RSV polymerase complex, causing chain termination of RNA synthesis. ALS-8112-TP did not inhibit polymerases from host or viruses unrelated to RSV such as hepatitis C virus (HCV), whereas structurally related molecules displayed dual RSV/HCV inhibition. The combination of molecular modeling and enzymatic analysis showed that both the 2'F and the 4'ClCH2 groups contributed to the selectivity of ALS-8112-TP. The lack of antiviral effect of ALS-8112-TP against HCV polymerase was caused by Asn291 that is well-conserved within positive-strand RNA viruses. This represents the first comparative study employing recombinant RSV and HCV polymerases to define the selectivity of clinically relevant nucleotide analogs. Understanding nucleotide selectivity towards distant viral RNA polymerases could not only be used to repurpose existing drugs against new viral infections, but also to design novel molecules.


Subject(s)
Antiviral Agents/pharmacology , Cytidine Triphosphate/analogs & derivatives , Cytidine Triphosphate/pharmacology , DNA-Directed RNA Polymerases/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Humans , RNA, Viral/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Viral Proteins/genetics
3.
J Med Chem ; 58(4): 1862-78, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25667954

ABSTRACT

Respiratory syncytial virus (RSV) is a leading pathogen of childhood and is associated with significant morbidity and mortality. To date, ribavirin is the only approved small molecule drug, which has limited use. The only other RSV drug is palivizumab, a monoclonal antibody, which is used for RSV prophylaxis. Clearly, there is an urgent need for small molecule RSV drugs. This article reports the design, synthesis, anti-RSV activity, metabolism, and pharmacokinetics of a series of 4'-substituted cytidine nucleosides. Among tested compounds 4'-chloromethyl-2'-deoxy-2'-fluorocytidine (2c) exhibited the most promising activity in the RSV replicon assay with an EC50 of 0.15 µM. The 5'-triphosphate of 2c (2c-TP) inhibited RSV polymerase with an IC50 of 0.02 µM without appreciable inhibition of human DNA and RNA polymerases at 100 µM. ALS-8176 (71), the 3',5'-di-O-isobutyryl prodrug of 2c, demonstrated good oral bioavailability and a high level of 2c-TP in vivo. Compound 71 is a first-in-class nucleoside RSV polymerase inhibitor that demonstrated excellent anti-RSV efficacy and safety in a phase 2 clinical RSV challenge study.


Subject(s)
Antiviral Agents/pharmacology , Deoxycytidine/analogs & derivatives , Enzyme Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Prodrugs/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/enzymology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Cricetinae , DNA-Directed DNA Polymerase/metabolism , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/metabolism , Deoxycytidine/chemical synthesis , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Haplorhini , Humans , Male , Molecular Conformation , Poly(ADP-ribose) Polymerases/metabolism , Prodrugs/administration & dosage , Prodrugs/chemistry , Rats , Rats, Sprague-Dawley , Respiratory Syncytial Virus Infections/virology , Structure-Activity Relationship , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...