Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chemistry ; 29(43): e202301055, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37208940

ABSTRACT

Low band gap materials have always been a focus of attention due to their potential applications in various fields. In this work, a series of asymmetric bistricyclic aromatic ene (BAE) compounds with fluorenylidene-cyclopentadithiophene (FYT) skeleton were facially synthesized, which were modified with different substituents (-OMe, -SMe). The FYT core exhibit twisted C=C bond with dihedral angles around 30°, and the introduction of -SMe group can provide additional S⋅⋅⋅S interaction between molecules, which is conducive to the charge transporting. The UV-Vis spectra, electrochemistry and photoelectron spectroscopy revealed that these compounds have relatively narrow band gaps, particularly, the -SMe modified compounds have slightly lower HOMO and Fermi energy levels than that of the -OMe modified compounds. Furthermore, PSCs devices were fabricated with the three compounds as HTMs, and FYT-DSDPA exhibit the best performance among them, revealing the fine-tuning band structure could influence properties of HTMs.

2.
Inorg Chem ; 62(18): 7061-7068, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37121904

ABSTRACT

A new series of O∧C-chelate tetra-coordinated boranes with naphtha-aldehyde as the chelate backbone have been synthesized. Their photophysical and photochemical properties have been examined, which show that all of the compounds can undergo both photo and thermal transformations, generating aryl-migrated [1,2]oxaborinine derivatives as the major products. 1,3-Sigmatropic shifts and an intramolecular nucleophilic addition mechanism are proposed for the photochemical and thermal conversion pathways, respectively.

3.
Angew Chem Int Ed Engl ; 62(7): e202217195, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36542446

ABSTRACT

Thermally activated delayed fluorescence (TADF) from linear two-coordinate coinage metal complexes is sensitive to the geometric arrangement of the ligands. Herein we realize the tuning of configuration from coplanar to orthogonal gradually by variation of substituents. In a complex with confined twist configuration, its blue emission peaking at 458 nm presents a high ΦPL of 0.74 and a short τTADF of 1.9 µs, which indicates a fast enough kr,TADF of 3.9×105  s-1 and a depressed knr of 1.4×105  s-1 . Such outstanding luminescent properties are attributed to the proper overlap of HOMO and LUMO on CuI d orbitals that guarantees not only small ΔEST but also sufficient transition oscillator strength for fast k r , S 1 ${{k}_{{\rm r},{{\rm S}}_{1}}}$ . Vacuum-deposited blue OLEDs with either doped or host-free emissive layer present external quantum efficiencies over 20 % and 10 %, respectively, demonstrating the practicality of the configurationally confined strategy for efficient linear CuI TADF emitters.

4.
Chem Sci ; 13(39): 11672-11679, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36320401

ABSTRACT

π-Conjugated macrocycles involving electron-deficient boron species have received increasing attention due to their intriguing tunable optoelectronic properties. However, most of the reported B(sp2)-doped macrocycles are difficult to modify due to the synthetic challenge, which limits their further applications. Motivated by the research of non-strained hexameric bora- and aza-cyclophanes, we describe a new class of analogues MC-BN5 and MC-ABN5 that contain charge-reversed triarylborane (Ar3B) units and oligomeric triarylamines (Ar3N) in the cyclics. As predicted by DFT computations, the unique orientation of the donor-acceptor systems leads to an increased dipole moment compared with highly symmetric macrocycles (M1, M2 and M3), which was experimentally represented by a significant solvatochromic effect with large Stokes shifts up to 12 318 cm-1. Such a ring-structured design also allows the easy peripheral modification of aza-boracyclophanes with tetraphenylethenyl (TPE) groups, giving rise to a change in the luminescence mechanism from aggregation-caused quenching (ACQ) in MC-BN5 to aggregation-induced emission (AIE) in MC-ABN5. The open-shell characteristics have been chemically enabled and were characterized by UV-Vis-NIR spectroscopy and electron paramagnetic resonance (EPR) for MC-BN5. The present study not only showed new electronic properties, but also could expand the research of B/N doped macrocycles into the future scope of supramolecular chemistry, as demonstrated in the accessible functionalization of ring systems.

5.
Adv Mater ; 34(49): e2206594, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36193773

ABSTRACT

The development of efficient organic sonosensitizers is crucial for sonodynamic therapy (SDT) in the field of cancer treatment. Herein, a new strategy for the development of efficient organic sonosensitizers based on triarylboron-doped acenethiophene scaffolds is presented. The attachment of boron to the linear acenethiophenes lowers the lowest unoccupied molecular orbital (LUMO) energy, resulting in redshifted absorptions and emissions. After encapsulation with the amphiphilic polymer DSPE-mPEG2000 , it is found that the nanostructured BAnTh-NPs and BTeTh-NPs (nanoparticles of BAnTh and BTeTh) shows efficient hydroxyl radical (• OH) generation under ultrasound (US) irradiation in aqueous solution with almost no phototoxicity, which can overcome the shortcomings of O2 -dependent SDT and avoid the potential cutaneous phototoxicity issue. In vitro and in vivo therapeutic results validate that boron-doped acenethiophenes as sonosensitizers enable high SDT efficiency with low phototoxicity and good biocompatibility, indicating that boron-functionalization of acenes is a promising strategy toward organic sonosensitizers for SDT.

6.
J Am Chem Soc ; 144(41): 18908-18917, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36194812

ABSTRACT

B-N-fused dianthracenylpyrazine derivatives are synthesized to generate new low gap chromophores. Photophysical and electrochemical, crystal packing, and theoretical studies have been performed. Two energetically similar conformers are identified by density functional theory calculations, showing that the core unit adopts a curved saddle-like shape (x-isomer) or a zig-zag conformation (z-isomer). In the solid state, the z-isomer is prevalent according to an X-ray crystal structure of a C6F5-substituted derivative (4-Pf), but variable-temperature nuclear magnetic resonance studies suggest a dynamic behavior in solution. B-N fusion results in a large decrease of the HOMO-LUMO gap and dramatically lowers the LUMO energy compared to the all-carbon analogues. 4-Pf in particular shows significant absorbance at greater than 700 nm while being almost transparent throughout the visible region. After encapsulation in the biodegradable polymer DSPE-mPEG2000, 4-Pf nanoparticles (4-Pf-NPs) exhibit good water solubility, high photostability, and an excellent photothermal conversion efficiency of ∼41.8%. 4-Pf-NPs are evaluated both in vitro and in vivo as photothermal therapeutic agents. These results uncover B-N Lewis pair functionalization of PAHs as a promising strategy toward new NIR-absorbing materials for photothermal applications.


Subject(s)
Nanoparticles , Neoplasms , Humans , Anthracenes , Isomerism , Polymers/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Electronics , Carbon , Water , Phototherapy
7.
Inorg Chem ; 61(39): 15315-15319, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36135458

ABSTRACT

We herein describe the synthesis of two axially chiral systems (HBN and BBN) by the incorporation of B centers into binaphthyl derivatives (HPy and BPy). Heteroatom-doped chiral polycyclic aromatic hydrocarbons were thus formed by fusion of the azaboroles to binaphthyls with the formation of B-N dative bonds. The resulting B-N Lewis pairs that serve as attractive fluorophores enabled modulation of the chiroptical properties both in solution and in the solid state.

8.
Org Lett ; 24(29): 5497-5502, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35856805

ABSTRACT

A new family of dimeric B/N Lewis pairs with sterically tunable substitutions has been accomplished using the Two-in-One design strategy. Their structures are characteristic of doubly B/N-containing cores, and the electronic interactions between B and N centers can be modulated by the steric effects of ortho-substitutions from methyl groups. Interestingly, unique white-light emissions were achieved for 2M'2BNM and 1M2BNM, ascribed to the integration of two triarylborane species (Bsp2- and Bsp3-hybridization) into one single molecule.

9.
Inorg Chem ; 61(28): 10705-10712, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35772025

ABSTRACT

Dimesitylboryl-acceptor (A) and diarylamine-donor (D) substituents are introduced at α positions of BN-doped tetrathienonaphthalene in the same and opposite directions of the B-N bond, namely, B-BN-N and N-BN-B, in order to demonstrate how the substitution patterns influence the photophysical properties. The photophysical and electrochemical properties of these D-π-A molecules have been investigated in detail, aided by UV-vis absorption and fluorescence spectroscopy as well as cyclic voltammetry. We find that both B-BN-N and N-BN-B show the typical intramolecular charge transfer emission. N-BN-B exhibits strong fluorescence with a narrower band gap and stronger Lewis acidity than that of B-BN-N. DFT calculations help give a reasonable explanation that subtle differences in the electronic structure of the host skeleton could also influence the substituents and feed back this effect to the entire molecule.

10.
Org Lett ; 24(10): 1935-1940, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35243861

ABSTRACT

Stable organic radicals with unique luminescence show great importance in photoelectromagnetic materials. We herein report two unusual radical-based systems (P5N-TTM and P5B-TTM) using the concerted effects of planar chiral pillar[5]arenes and tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. The steric effect and electronic doublet-spin character of these radicals allowed the optical resolution and the first red emissions (∼650 nm) for pillar[5]arene derivatives. Notably, cross-coupling with macrocyclic pillar[5]arene, in turn, considerably enhanced the configurational stability of TTM radicals.

11.
Soft Matter ; 18(7): 1404-1411, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35073569

ABSTRACT

We report herein a new class of either carbazolyl or BMes2 (Mes = mesityl) group functionalized Boc-Lys(Z)-Phe-OMe (Z = carbobenzyloxy) dipeptides-Boc-Lys(Z)-Phe-C5-carbazolyl (N2) and Boc-Lys(Z)-Phe-C6-BMes2 (B2). Both of the compounds are able to gel in several common aromatic solvents at low concentration. The photophysical studies reveal the existence of intense through space charge transfer interaction between the donor and acceptor units in the B2 and N2 based dual-component supramolecular organogels. Furthermore, by tuning the B2 : N2 ratios in the binary gels, both the maximum emission wavelength and the morphologies of the dual-component gels can be effectively modulated.

12.
Org Lett ; 23(18): 7236-7241, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34463516

ABSTRACT

A series of 3,6-di-tert-butyl carbazole-functionalized 9-borafluorene derivatives have been prepared with outstandingly strong photoluminescence with quantum yields up to ca. 100 and 94% for Mes*BF-pCz in solution and film, respectively. 1,3,5-Tris(trifluoromethyl)benzene (FMes)-substituted compounds exhibit enhanced Lewis acidity with coordination to weak nucleophiles like tetrahydrofuran, resulting in a long afterglow at low temperature. The large two-photon absorption cross-section of ca. 1103 GM for Mes*BF-pCz at 800 nm in CH2Cl2 indicated its potential application in bioimaging.

13.
Chem Commun (Camb) ; 57(64): 7926-7929, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34286739

ABSTRACT

A highly electron-deficient dicyanomethylene-bridged triarylborane, FMesB-TCN, was reported with a low-lying LUMO and crystallization-induced emission enhancement in its block-shape crystal. DFT calculations revealed lower re-organization energy of the block crystal than that of the weakly emissive acicular crystal. This work explored a novel boron-containing skeleton with interesting optical properties.

14.
Org Lett ; 23(15): 5836-5841, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34251839

ABSTRACT

A series of dicyanomethylene-functionalized triarylboranes is reported in this work, with low-lying LUMO energy levels at ca. -3.66 eV for FMesB-ACN. The single-crystal structures of the mono- and dianion of Mes*B-ACN were obtained via chemical reduction, which revealed a conversion from a quinoidal to an aromatic structure. The strong Lewis acidity of these compounds is reflected in a fluoride-anion binding experiment. This work introduces a facile strategy for modulating the electron deficiency of boron-containing compounds.

15.
J Am Chem Soc ; 141(18): 7453-7462, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30998336

ABSTRACT

We demonstrate that the modification of anthracene with B ← N Lewis pairs at their periphery serves as a highly effective tool to modify the electronic structure with important ramifications on the generation and reactivity toward singlet oxygen. A series of BN-fused dipyridylanthracenes with Me groups in different positions of the pyridyl ring have been prepared via directed electrophilic borylation. The steric and electronic effects of the substituents on the structural features and electronic properties of the isomeric borane-functionalized products have been investigated in detail, aided by experimental tools and computational studies. We find that BDPA-2Me, with Me groups adjacent to the pyridyl N, has the longest B-N distance and shows overall less structural distortions, whereas BDPA-5Me with the Me group close to the anthracene backbone experiences severe distortions that are reflected in the buckling of the anthracene framework and dislocation of the boron atoms from the planes of the phenyl rings they are attached to. The substitution pattern also has a dramatic effect on the self-sensitized reactivity of the acenes toward O2 and the thermal release of singlet oxygen from the respective endoperoxides. Kinetic analyses reveal that BDPA-2Me rapidly reacts with O2, whereas BDPA-5Me is converted only very slowly to its endoperoxide. However, the latter serves as an effective singlet oxygen sensitizer, as demonstrated in the preferential formation of the endoperoxide of dimethylanthracene in a competition experiment. These results demonstrate that even relatively small modifications in the substitution of the pyridyl ring of BN-fused dipyridylanthracenes change the steric and electronic structure, resulting in dramatically different reactivity patterns. Our findings provide important guidelines for the design of highly effective sensitizers for singlet oxygen on one hand and the realization of materials that readily form endoperoxides in a self-sensitized manner and then thermally release singlet oxygen on demand on the other hand.

16.
J Am Chem Soc ; 139(50): 18170-18173, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29185739

ABSTRACT

The judicial placement of main group elements in conjugated structures is emerging as a key route to novel functional hybrid materials. We demonstrate here that the formation of B-N Lewis pairs at the periphery of anthracene leads to buckling of the backbone while also dramatically lowering the LUMO energy. The resulting BN-substituted contorted polycyclic aromatic hydrocarbons show large bathochromic shifts in the absorption and emission relative to all-carbon analogs. In the presence of light, they rapidly react with O2 without the need for an external photosensitizer, resulting in selective and reversible formation of the corresponding endoperoxides.

17.
Chem Sci ; 8(8): 5497-5505, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-30155227

ABSTRACT

A new class of Ar2B-π-A dyads and A-π-B(Ar)-π-A triads that feature strong organic acceptor moieties (A = pyridalthiadiazole, PT) attached to a central triarylborane were synthesized via Stille cross-coupling of ArB(Th-SnMe3)2 (Th = thiophenediyl, Ar = 2,4,6-tri-tert-butylphenyl (Mes*) or 2,4,6-tris(trifluoromethylphenyl) (FMes)) with one or two equivalents of dibromopyridalthiadiazole. Single-crystal X-ray crystallography data for the triad Mes*B(Th-PT-Br)2 indicate a highly coplanar conformation, which is ideal for extended π-conjugation and favors intermolecular π-stacking. Despite the presence of Br substituents, these compounds exhibit strong photoluminescence in THF solution with quantum yields reaching up to 52%. Further extension of conjugation by coupling with 2-hexylthiophene leads to additional bathochromic shifts to give a highly soluble and strongly red-emissive material. All these compounds undergo facile reduction, first of the PT substituents and then at more negative potentials for the borane moiety. Upon chemical reduction with in THF, an intramolecular charge transfer (ICT) pathway from the reduced PT moieties to boron is enabled and this results in a change of the color to blue. Theoretical calculations reveal that, due to the electron-withdrawing effect of the PT moieties, not only the PT-centered LUMOs themselves but also the LUMO+1 or LUMO+2, which show contributions from the p orbital of boron, experience a significant decrease in energy; they are much lower in energy than those of typical conjugated triarylboranes. The relatively low energy of both the PT-centered LUMOs and boron-centered LUMO+1 or LUMO+2 opens up multiple pathways for reaction with highly nucleophilic fluoride anions. Evidence for very strong F- binding to boron is obtained in the case of the more sterically accessible FMes derivatives. Fluoride anion binding leads to an electron-rich borate moiety and as such generates an ICT pathway to the electron-deficient PT moieties; the direction of this ICT is opposite to that observed upon chemical reduction. For the Mes* derivatives, F- binding is hindered, resulting in competing reduction of the PT acceptors. Finally, the electron acceptor character of the hexylthiophene derivative is exploited in electron-only diodes that show an average electron mobility of 6.4 ± 1.6 × 10-5 cm2 V-1 s-1.

18.
Dalton Trans ; 45(11): 4580-7, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26846445

ABSTRACT

Luminescent B-N containing conjugated ladder compounds are prepared by directed electrophilic aromatic substitution. Negishi cross-coupling reaction of 2,7-dibromo-9,9-dihexylfluorene with 6-methylpyridin-2-yl(pivaloyloxy)zinc furnishes the dipyridylfluorene precursor (1) in 44% yield. Compound 1 is then subjected to electrophilic borylation with BBr3 in the presence of iPr2NEt as a bulky base to give the tetra-coordinate ladder-type organoboron species 2-Br. Arylation of 2-Br is accomplished by addition of Ph2Zn or C6F5Cu in toluene furnishing the targeted bis(pentafluorophenyl)borane and diphenylborane species 2-Ar (Ar = Ph, C6F5) in 53 and 44% yield respectively. The products show a strong blue emission and undergo multi-step reversible reduction and oxidation processes. The effect of fluorination of the pendant aryl groups on the electronic structure is further examined by DFT methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...